发表于2024-12-26
深度学习 中文版+机器学习 周志华(套装共2册) pdf epub mobi txt 电子书 下载
内容全面;结构合理;叙述清楚;深入浅出。人工智能领域中文的开山之作!
这是一本面向中文读者的机器学习教科书, 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识.
然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究,
以及具有类似背景的对机器学习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.
内容简介
《机器学习》机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:** 部分(**~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(**1~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。
本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
周志华,南京大学计算机系教授,ACM杰出科学家,IEEE Fellow, IAPR Fellow, IET/IEE Fellow, 中国计算机学会会士。国家杰出青年科学基金获得者、长江学者特聘教授。先后担任多种SCI(E)期刊执行主编、副主编、副编辑、编委等。中国计算机学会人工智能与模式识别专业委员会主任,中国人工智能学会机器学习专业委员会主任,IEEE计算智能学会数据挖掘技术委员会副。
书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程
可使用这些习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者
启发思考.
?
本书在内容上尽可能涵盖机器学习基础知识的各方面, 但作为机器学习入门读物且因授课时间的考虑, 很多重要、前沿的材料未能覆盖,
即便覆盖到的部分也仅是管中窥豹, 更多的内容留待读者在进阶课程中学习. 为便于有兴趣的读者进一步钻研探索, 本书每章均介绍了
一些阅读材料, 谨供读者参考.
?
笔者以为, 对学科相关的重要人物和事件有一定了解等
包装很好,纸质质量不错
评分到货很快,到手了就快速通看了一遍,完全停不下来!
评分深度学习书不错,机器学习书一般
评分包装很好,纸质质量不错
评分抓紧时间学习,跟上这波浪浪潮。
评分不错的书籍,之前一直看电子版的,特意买回来备着。。。偶尔翻一下
评分很好的书,质量也挺好。
评分好书呀
评分很有用的两本书,没事儿就看看
深度学习 中文版+机器学习 周志华(套装共2册) pdf epub mobi txt 电子书 下载