編輯推薦
對於認真擁抱大數據機遇的人而言,這是一本必讀書。
內容簡介
這是一本博大精深但又不太技術的指南,嚮你介紹數據科學的基本原則,並帶領你全程瀏覽從所搜集數據中抽取有用知識和商業價值所必需的“數據分析思維”。通過學習數據科學原則,你將領略當今用到的諸多數據挖掘技巧。更重要的是,這些原則支撐著通過數據挖掘技巧解決商業問題所需的手段和策略。
精彩書評
“本書chao yue瞭數據分析基礎。這是為我們中的一部分人(也許是全部)準備的重要指南,他們的業務基於無處不在的數據機遇和數據驅動決策的新體製而設。”
—— Tom Phillips(Dstillery CEO,前Google搜索和分析業務主管)
“兩位作者早在‘數據科學’這個名詞齣現之前就是該領域的知名專傢,他們拿下瞭一個復雜的主題並且將它變得曉暢通俗。這是第1本此類著作,專注於將數據科學概念應用於實際的商業問題。它被自由地揮灑在引人注目的現實世界的例子中,概述瞭商業世界中熟悉而易於獲取的問題:客戶流失、有針對性的營銷,甚至是威士忌分析!
這本書是獨yi無er的,因為它不是給齣算法的詳細指南,而是幫助讀者理解數據科學背後的基本概念,重要的是如何在解決問題時取得成功。無論您正在尋找數據科學的全麵綜述,還是需要基礎知識的新興數據科學傢,這本書都是必讀的。”
—— Chris Volinsky(AT&T實驗室統計研究總監,奬金達百萬美元的Netflix挑戰賽獲奬者)
“數據是生産力增長、創新和更豐富的客戶洞察力新浪潮的基礎。直到最近纔被廣泛地視為競爭優勢的來源,處理好數據正在迅速成為停留在遊戲中的籌碼。作者的深刻應用經驗成為觀察你的競爭對手策略的一個窗口。”
—— Alan Murray(連續創業者,Coriolis Ventures閤夥人)
目錄
Preface
1.Introduction: Data-Analytic Thinking
The Ubiquity of Data Opportunities
Example: Hurricane Frances
Example: Predicting Customer Churn
Data Science, Engineering, and Data-Driven Decision Making
Data Processing and "Big Data"
From Big Data 1.0 to Big Data 2.0
Data and Data Science Capability as a Strategic Asset
Data-Analytic Thinking
This Book
Data Mining and Data Science, Revisited
Chemistry Is Not About Test Tubes: Data Science Versus the Work of the Data Scientist
Summary
2.Business Problems and Data Science Solutions
From Business Problems to Data Mining Tasks
Supervised Versus Unsupervised Methods
Data Mining and Its Results
The Data Mining Process
Business Understanding
Data Understanding
Data Preparation
Modeling
Evaluation
Deployment
Implications for Managing the Data Science Team
Other Analytics Techniques and Technologies
Statistics
Database Querying
Data Warehousing
Regression Analysis
Machine Learning and Data Mining
Answering Business Questions with These Techniques
Summary
3.Introduction to Predictive Modeling: From Correlation to Supervised Segmentation.
Models, Induction, and Prediction
Supervised Segmentation
Selecting Informative Attributes
Example: Attribute Selection with Information Gain
Supervised Segmentation with Tree-Structured Models
Visualizing Segmentations
Trees as Sets of Rules
Probability Estimation
Example: Addressing the Churn Problem with Tree Induction
Summary
4.Fitting a Model to Data
Classification via Mathematical Functions
Linear Discriminant Functions
Optimizing an Objective Function
An Example of Mining a Linear Discriminant from Data
Linear Discriminant Functions for Scoring and Ranking Instances
Support Vector Machines, Briefly
Regression via Mathematical Functions
Class Probability Estimation and Logistic "Regression"
Logistic Regression: Some Technical Details
Example: Logistic Regression versus Tree Induction
Nonlinear Functions, Support Vector Machines, and Neural Networks
5.Overfitting and Its Avoidance
6.Similarity, Neighbors, and Clusters
7.Decision AnalyticThinking h What Is a Good Model?
8.Visualizing Model Performance
9.Evidence and Probabilities
10.Representing and Mining Text
11.Decision Analytic Thinking Ih Toward Analytical Engineering
12.Other Data Science Tasks and Techniques
13.Data Science and Business Strategy
14.Conclusion
A.Proposal ReviewGuide
B.Another Sample Proposal
Glossary
Bibliography
Index
商業數據科學(影印版) [Data Science for Business] 下載 mobi epub pdf txt 電子書