内容简介
1)对大数据计算的标准、模型、计算架构、开发技术体系做了一个较完整的论述和总结,适宜于作为计算机和软件工程专业高年级课程或研究生课程的教材;2)本书也对大数据计算架构和开发平台及技术进行了论述,给出了相关领域的工程案例,也可作为IT技术人士的专业参考书。
目录
第1章绪论
1.1数据与数据科学
1.2大数据概念
1.3大数据技术特征
参考文献
习题
第2章大数据计算体系
2.1大数据计算架构
2.2数据存储系统
2.2.1数据清洗与建模
2.2.2分布式文件系统
2.2.3NoSQL数据库
2.2.4统一数据访问接口
2.3数据处理平台
2.3.1数据分析算法
2.3.2计算处理模型
2.3.3计算平台与引擎
2.4数据应用系统
2.4.1大数据应用领域
2.4.2大数据解决方案
参考文献
习题
第3章大数据标准与模式
3.1大数据标准体系
3.2大数据计算模式
参考文献
习题
第4章数据采集方法
4.1系统日志采集
4.1.1日志采集的目的
4.1.2日志采集过程
4.2网络数据采集
4.2.1网络爬虫工作原理
4.2.2网页搜索策略
4.2.3网页分析算法
4.2.4网络爬虫框架
4.3数据采集接口
参考文献
习题
第5章数据清洗与规约方法
5.1数据预处理研究现状
5.1.1数据清洗的研究现状
5.1.2数据规约的研究现状
5.2数据质量问题分类
5.2.1单数据源的问题
5.2.2多数据源的问题
5.3数据清洗技术
5.3.1重复记录清洗
5.3.2消除噪声数据
5.3.3缺失值清洗
5.4数据归约
5.4.1维归约
5.4.2属性选择
5.4.3离散化方法
5.5数据清洗工具
参考文献
习题
第6章数据分析算法
6.1C4.5算法
6.1.1算法描述
6.1.2属性选择度量
6.1.3其他特征
6.2k�簿�值算法
6.3支持向量机
6.4Apriori算法
6.5EM算法
6.5.1案例:估计k个高斯分布的均值
6.5.2EM算法步骤
6.6PageRank算法
6.6.1PageRank的核心思想
6.6.2PageRank的计算过程
6.7AdaBoost算法
6.7.1Boosting算法的发展历史
6.7.2AdaBoost算法及其分析
6.8k�擦诮�算法
6.9朴素贝叶斯
6.9.1朴素贝叶斯分类器
6.9.2贝叶斯网络
6.10分类回归树算法
6.10.1建立回归树
6.10.2剪枝过程
参考文献
习题
第7章文本读写技术
7.1读取文本文件
7.1.1读取txt文件
7.1.2读取csv文件
7.2写入文本文件
7.3处理二进制数据
7.4数据库的使用
7.4.1数据库的连接
7.4.2执行SQL语句
7.4.3选择和打印
7.4.4动态插入
7.4.5update操作
参考文献
习题
第8章数据处理技术
8.1合并数据集
8.1.1索引上的合并
8.1.2轴向连接
8.1.3合并重叠数据
8.2数据转换
8.2.1移除重复数据
8.2.2利用函数进行数据转换
8.2.3替换值
8.2.4重命名轴索引
8.2.5离散化数据
8.2.6检测异常值
8.2.7排列和随机采样
8.2.8哑变量
8.3字符串操作
8.3.1内置字符串方法
8.3.2正则表达式
8.3.3Pandas中矢量化的字符串函数
参考文献
习题
第9章数据分析技术
9.1NumPy工具包
9.1.1创建数组
9.1.2打印数组
9.1.3基本运算
9.1.4索引、切片和迭代
9.1.5形状操作
9.1.6复制和视图
9.1.7NumPy实用技巧
9.2Pandas工具包
9.2.1Series
9.2.2DataFrame
9.3Scikit�睱earn工具包
9.3.1逻辑回归
9.3.2朴素贝叶斯
9.3.3k�沧罱�邻
9.3.4决策树
9.3.5支持向量机
9.3.6优化算法参数
参考文献
习题
第10章数据可视化技术
10.1Matplotlib绘图
10.1.1MatplotlibAPI入门
10.1.2Figure和Subplot的画图方法
10.1.3调整Subplot周围的间距
10.1.4颜色、标记和线型的设置
10.1.5刻度、标签和图例
10.2Mayavi2绘图
10.2.1使用mlab快速绘图
10.2.2Mayavi嵌入到界面中
10.3其他图形化工具
参考文献
习题
第11章Hadoop生态系统
11.1Hadoop系统架构
11.2HDFS分布式文件系统
11.2.1HDFS体系结构
11.2.2HDFS存储结构
11.2.3数据容错与恢复
11.2.4Hadoop/HDFS安装
11.3分布式存储架构
11.3.1HBase系统架构
11.3.2数据模型与存储模式
11.3.3HBase数据读写
11.3.4数据仓库工具Hive
11.3.5HBase安装与配置
11.4HBase索引与检索
11.4.1二次索引表机制
11.4.2二次索引技术方案
11.5资源管理与作业调度
11.5.1分布式协同管理组件ZooKeeper
11.5.2作业调度与工作流引擎Oozie
11.5.3集群资源管理框架YARN
参考文献
习题
第12章MapReduce计算模型
12.1分布式并行计算系统
12.2MapReduce计算架构
12.3键值对与输入格式
12.4映射与化简
12.5应用编程接口
参考文献
习题
第13章图并行计算框架
13.1图基本概念
13.2BSP模型
13.3Pregel图计算引擎
13.4Hama开源框架
13.5应用编程接口
参考文献
习题
第14章交互式计算模式
14.1数据模型
14.2存储结构
14.3并行查询
14.4开源实现
参考文献
习题
第15章流计算系统
15.1流计算模型
15.2Storm计算架构
15.3工作机制实现
15.4Storm编程接口
参考文献
习题
精彩书摘
第3章大数据标准与模式
3.1大数据标准体系
近年来随着大数据计算的兴起,国际标准化组织ISO/IEC、国际电信联盟ITU、美国国家技术标准研究院NIST和我国工信部、全国信息技术标准化技术委员会均开展了大数据计算标准的研究。ISO/IECJCT1S32(ISO/IEC联合技术委员会第32“数据管理与交换”分委员会)[1]是一个致力于研制信息系统环境及之间的数据管理和交换标准、为跨行业领域协调数据管理提供技术性支持的国际组织。其主要工作内容包括:协调现有和新生数据标准化领域的参考模型和框架;负责数据域、数据类型和数据结构及相关的语义;负责用于持久存储、并发访问、并发更新和数据交换的语言、服务和协议等标准;负责用于构造、组织和注册元数据及共享和互操作相关的其他信息资源(电子商务等)的方法、语言服务和协议的制定。SC32目前下设4个工作组和几个研究组,其主要工作范围如下。
1.WG1(WorkGroup1):电子业务
工作范围为研制各组织使用的信息系统间全球互操作所需的开放电子数据交换方面的通用IT标准,包括商务和信息技术两方面的互操作标准。
2.WG2(WorkGroup2):元数据
工作范围为研制、开发和维护有利于规范和管理元数据、元模型和本体的标准,此类标准有助于理解和共享数据、信息过程、互操作性、电子商务以及基于模型和基于服务的开发,包括:建议用于规定和管理元数据、元模型和本体的框架;规定和管理元数据、元模型和本体;规定和管理过程、服务和行数据;开发管理元数据、元模型和本体的机制,包括注册和存储;开发交换元数据、元模型和本体的机制,包括基于互联网、局域网等的语义等。
3.WG3(WorkGroup3):数据库语言
工作范围为动态规定、维护和描述多用户环境中的数据库结构和组件制定和维护语言标准;通过规定事务的提交、恢复和安全机制提供额外的对数据库管理系统完整性的支持;为存储、访问和处理多并发用户数据库制定和维护语言标准;为其他标准编程语言提供开发接口;为描述数据类型和行为的其他标准提供访问接口或为应用开发提供数据库组件。
4.WG4(WorkGroup4):SQL多媒体和应用包
工作范围为规定各种应用领域使用的抽象数据类型的定义。抽象数据类型定义是使用数据库语言SQL标准中提供的用户定义类型机制来规定的,包括全文、空间、静态图像、静态图形、动画、视频、音频、地震和音乐等数据包。为应用API需求进行数据管理,其他数据包使用SQL机制的定义,而不是用户自定义类型。
2012年,SC32在柏林全会上决定成立下一代分析和大数据研究组(SGNextGenerationAnalyticsandBigData),该研究组主要的研究内容为下一代数据分析、社会分析和底层技术领域中潜在的标准化需求。SC32其他的研究组还包括云计算元数据研究组(SGMetadataforCloudComputing)和基于事实基础的建模元模型研究组(SGMetamodelforFactBasedModelling)。
2013年11月,ISO/IECJTC1新成立了负责大数据国际标准化的研究小组ISO/IECJTC1SG2,由美国国家标准与技术研究院(NIST)专家WoChang担任召集人[2]。2014年,ISO/IECJTC1SG2的工作重点包括:调研ISO/IECJTC1在大数据领域的关键技术、参考模型以及用例等标准基础;确定大数据领域应用需要的术语与定义;评估分析当前大数据标准的具体需求,提出ISO/IECJTC1大数据标准优先顺序;向2014年ISO/IECJTC1全会提交大数据建议的技术报告和其他研究成果。2014年,根据ISO/IECJCT1SG2的建议新成立了负责大数据国际标准化的大数据工作组(IS0/IECJTC1WG9)。
ITU在2013年11月发布了题目为“大数据:今天巨大,明天平常”的技术观察报告[11],这个技术观察报告分析了大数据相关的应用实例,指出大数据的基本特征、促进大数据发展的技术,在报告的最后部分分析了大数据面临的挑战和ITU�睺可能开展的标准化工作。在这份报告中,特别提及了NIST和JTC1/SC32正在开展的工作。从ITU�睺的角度来看,大数据发展面临的最大挑战包括数据保护、隐私和网络安全、法律和法规的完善。根据ITU�睺现有的工作基础,开展的标准化工作包括:高吞吐量、低延迟、安全、灵活和规模化的网络基础设施;汇聚数据机和匿名;网络数据分析;垂直行业平台的互操作;多媒体分析;开放数据标准。
目前,ITU�睺的大数据标准化工作主要是在SG13(第13研究组)开展[2],具体包括该研究组下设的Q2课题组、Q17课题组,以及Q18课题组,由Q17牵头开展ITU�睺大数据标准化路标的制定工作并负责向TSAG(电信标准化咨询委员会)汇报。其中,Q2涉及的研究课题为“针对大数据的物联网具体需求和能力要求”,其主要内容为针对大数据在物联网数据传输、数据处理、数据存储、访问控制、数据査询和数据验证等方面的具体要求和能力要求,目前处于标准研制阶段。
……
前言/序言
前言
大数据(BigData)已被视为硬件、软件、网络之外的第四种计算资源,随着各类大数据应用的兴起,大数据的采集、存储、建模及计算处理已成为分布式计算领域的热门研究课题,也引起产业界极大的兴趣和关注。大数据的计算处理不仅涉及各类数据分析挖掘算法,其计算系统的性能更多依赖于计算模型与计算架构。目前,比较一致的看法是大数据计算系统大致可分为三个层次:数据存储层、数据处理层和数据应用层。数据存储层提供海量数据存储架构与数据访问界面;数据处理层提供对数据分析算法和计算模型的支持;数据应用层则包含各种基于大数据计算分析的应用软件系统。这三个层面都涉及不同的数据模型、计算架构及开发技术标准,目前主流的有两个主线:以Google为代表的商业产品和以Hadoop为代表的开源技术。在学习和研究大数据计算技术时,需要对上述计算架构、技术和标准有一个总体的了解,这样才能做到不限于一点而把握全局。
针对国家“互联网+”的战略发展需求,近期国内不少高校新开设了数据科学与大数据计算技术专业,大数据分析与计算成为其主干专业课程,其他如计算机科学与技术、互联网应用系统、物联网工程等专业都需要开设大数据计算课程,因此迫切需要一本对大数据处理与计算有一个较全面的论述、适合高年级本科生或研究生学习的教材,正是基于这种需求,本书作者编著了此书,希望对大数据计算系统的各类分析算法、计算模型、计算架构与开发技术做出一个综合性的介绍与阐述,为大家进一步学习大数据技术及应用开发打下基础。
全书共计20章,第1~3章介绍大数据计算的概念、计算体系总体架构、技术标准等,让读者建立大数据计算的基本概念;第4~6章介绍数据采集方法、数据建模及各类分析算法;第7~10章介绍文本数据读取、数据处理与分析、数据可视化技术;第11章和第12章详细介绍Hadoop计算平台,包括HDFS分布式文件系统与MapReduce计算模型;第13~16章具体介绍各类大数据计算模型与架构,包括图并行计算、交互式计算、流计算、内存计算等,其中重点阐述了Pregel、Hama、Storm、Spark等计算架构;第17~20章则介绍了大数据计算技术在医疗保险系统、互联网电子商务、金融信贷系统等领域的应用。本书包含内容较多、篇幅较长,教师在讲授时可根据自己的需要对章节进行选取裁剪。
汤羽教授负责本书的总体结构及第1~3章、第11章和第12章的撰写,林迪副教授负责第4~10章,范爱华副教授负责第13~16章,吴薇薇硕士负责第17~20章。本书部分图片取自互联网,部分文字也参考了网页内容,作者尽可能将引用链接在参考文献罗列中给出,少部分无法给出引用的,作者在此一并致谢。
大数据计算是一个新兴技术领域且仍在高速发展中,新的概念、方法和技术不断涌现。作者因学识有限,本书必然会存在不足,希望得到学界同仁的批评指正,以利我们改进完善。“业精于勤荒于嬉、行成于思毁于随”,作者愿与科学界同行一起努力在这个领域耕耘。
汤羽2017年7月于蓉城
大数据分析与计算 电子书 下载 mobi epub pdf txt