發表於2024-11-24
遊戲數據分析實戰 pdf epub mobi txt 電子書 下載
《遊戲數據分析實戰》貫穿整個遊戲生命周期,提供瞭豐富的數據分析案例,從預熱到封測,再到公測, 均為作者在實際工作中經曆的真實案例。案例分析包含數據來源、分析方法、分析過程、分析結論及小結。通過學習本書不但能較深入地學習數據分析方法,還能瞭解到運營和市場的相關知識。
《遊戲數據分析實戰》主要針對遊戲策劃、遊戲運營、遊戲數據分析、産品數據分析挖掘、數據平颱開發維護人員及對數據分析感興趣的讀者,介紹怎樣利用數據分析遊戲生命周期中各階段遇到的問題。
《遊戲數據分析實戰》主要分為三部分:第一部分主要介紹遊戲數據分析相關指標體係,通過這套體係,可以初步監控遊戲整體運營情況;第二部分主要介紹遊戲正式發行前期的市場調研、渠道用戶質量分析、競品分析及投資收益預測,對遊戲品質進行定位,評估正式上綫後的效果;第三部分主要對遊戲正式發行後的用戶流失、活躍用戶分類、付費習慣、版本迭代效果、區服閤並等主要問題進行深入探討,實現遊戲的精益化運營。
《遊戲數據分析實戰》的特色是以詳細案例為主,通過SPSS、Excel等工具逐步展示實施步驟。通過手把手的方式讓讀者快速掌握遊戲數據分析方法。
黎湘艷,盛大遊戲數據分析專傢,具有9年遊戲行業數據分析、數據挖掘工作經驗。從2008年開始在盛大遊戲從事數據分析工作,先後主持或參與50多款遊戲的數據分析工作,主要産品有:《熱血傳奇》《傳奇世界》《龍之榖》《永恒之塔》《最終幻想14》《血族》《超級地城之光》《Love Live》《城與龍》等。其研究方嚮貫穿遊戲整個生命周期,例如,精確定位遊戲品質、評估市場投放和運營活動效果、分析用戶遊戲行為、用戶畫像、流失預警和建立收入預測模型等,對運營效果有顯著提升;撰寫各類專題分析報告超過100篇,報告能緊密貼閤業務,是遊戲運營和發行的重要參考信息,在一定程度上驅動瞭業務開展,提升瞭運營收入。
葉洋,遊卡桌遊資深數據分析師,具有7年遊戲行業數據分析、數據挖掘工作經驗。
作為盛大遊戲前任總裁譚群釗先生的資深秘書,黎湘艷幾乎親曆瞭盛大遊戲從零開始創立遊戲數據分析規範的全過程。這套規範至今仍在指導著大部分成功遊戲公司數據部門的工作思路,即使它可能換瞭各種“皮膚”。能把這些經驗整理齣來是瞭不起的,相信未來的遊戲行業精英,會感謝自己買瞭這本書。
——陳大年,盛大網絡創始人
入行16年,黎湘艷是國內網遊行業第一批遊戲人。本書從遊戲數據分析的角度解析瞭她對於行業的理解,講述數據分析如何支持和影響遊戲的運營錶現以及遊戲與用戶的關係。書裏係統總結瞭她對於遊戲數據分析的方法論、實際應用案例、産生的結果,也具象說明瞭如何埋點數據、建立數據模型,如何進行數據加工、生成數據結果指導業務等一係列對實際工作具有指導意義的案例。值得數據分析工作者一讀。
——譚群釗,盛大集團前總裁/盛大遊戲前董事長兼CEO、豐厚資本創始閤夥人
隨著數據成為新的生産資料,數據分析對各行各業的價值愈發重要。盛大遊戲作為國內較早探索及實踐遊戲數據分析的公司,從端遊、頁遊到手遊,從早期的PRAPA到現在的AARRR,黎湘艷完整曆經其中並逐漸成長為遊戲數據分析專傢。本書集結瞭她完整的數據分析思想及50多個遊戲項目數據支持的積纍提煉,內容翔實、案例精彩,想要瞭解或加深理解遊戲數據分析的讀者,不容錯過。
——嶽弢,巨人網絡聯閤創始人、豐厚資本創始閤夥人
第 1 章 “數羊”與數據化運營 1
1.1 “數羊”的故事 1
1.2 數據分析的定義及步驟 2
1.3 數據分析的價值 6
1.4 一份好的分析報告應具備的要點 7
1.5 圖錶製作的要點 7
1.6 怎樣成為一名優秀的數據分析師 12
1.7 遊戲業務相關數據 15
1.8 案例:不同寫法的分析報告分享 16
第 2 章 遊戲關鍵數據指標 21
2.1 轉化率 21
2.2 留存率 23
2.3用戶付費指標 26
2.4 導入用戶成本 27
2.5 LTV 28
2.6 ROI 29
2.7 手遊和端遊的區彆 30
第 3 章 遊戲發行預熱期 32
3.1 案例:預訂用戶分析 32
3.2 案例:預訂用戶轉化率預估 45
3.3 案例:競品分析 51
第 4 章 遊戲封測期 57
4.1 案例:封測用戶調查分析 58
4.2 案例:渠道用戶質量分析 83
4.3 案例:客戶端大小對用戶轉化率的影響 92
4.4 遊戲公測前期收入、活躍預測 96
4.5 最優市場費投放預估 101
4.6 案例:用戶流失原因分析 105
第 5 章 公測期市場分析 118
5.1 案例:預熱期的競品調研 119
5.2 案例:遊戲服務器數量確定 126
5.3 案例:廣告投放效果分析 132
5.4 案例:用戶手機機型分布分析 141
第 6 章 公測期用戶分析 153
6.1 用戶流失原因分析 153
6.1.1 案例 1:閤理定義流失用戶 154
6.1.2 案例 2:玩傢等級副本流失分析 159
6.1.3 案例 3:流失率與當前等級流失率分析 162
6.1.4 案例 4:等級付費轉化率分析 163
6.1.5 案例 5:卸載客戶端的用戶流失分析 166
6.1.6 案例 6:應用 5W1H 分析法分析流失用戶 173
6.2 活躍用戶細分 189
6.2.1 聚類分析——快速聚類 189
6.2.2 案例:《全民×××》聚類分析 SPSS 實現 189
6.3 案例:預訂且登錄用戶分析 196
第 7 章 公測期付費分析 202
7.1 案例:用戶付費習慣分析 202
7.1.1 分析方法概述 202
7.1.2 數據來源 203
7.1.3 各個付費模塊的用戶消耗情況 203
7.1.4 不同類型玩傢單一消耗分布 204
7.1.5 不同類型玩傢的消耗分布 205
7.1.6 分析結論 208
7.1.7 小結 209
7.2 案例:高端用戶預流失模型 209
7.3 案例:裝備定價策略分析 214
7.4 案例:遊戲收入下降原因分析 217
7.5 案例:分析遊戲的收入指標完成情況及數據預警 219
7.5.1 分析方法概述 219
7.5.2 分析結論 224
7.5.3 小結 225
第 8 章 公測期版本分析 226
8.1 案例版本更新效果分析
8.1.1 分析方法概述 226
8.1.2 《遊戲 A》更新版本後的效果分析 227
8.1.3 分析結論 237
8.1.4 小結 238
8.2 案例:活動效果分析 239
8.2.1 分析方法概述 239
8.2.2 某遊戲全年活動效果對比分析 240
8.2.4 小結 245
8.3 案例:開新服效果分析 245
8.3.1 分析方法概述 245
8.3.2 《遊戲 A》開新服後新用戶和收入大漲原因分析 245
8.3.3 小結 251
8.4 案例:區服閤並分析 251
8.4.1 區服閤並後的平均在綫人數、消耗 ARPPU 值 251
8.4.2 平均在綫及平均在綫消耗相關性關係 254
8.4.3 閤服前後等級分布、人均 PVP 以及敵對勢力均衡情況 254
8.4.4 《全民×××》區服閤並玩傢問捲調查 256
8.4.5 主要結論 257
8.5 聊天內容分析 258
8.5.1 案例 1:《遊戲 A》遊戲內聊天記錄分析 258
8.5.2 案例 2:《遊戲 B》 QQ 群聊天記錄分析 266
8.5.3 案例 3:《遊戲 C》貼吧發帖記錄分析 275
1.8.3 《遊戲 C》:VIP 玩傢和客服聊天分析
根據《遊戲 C》 VIP 玩傢與客服聊天的記錄進行分析,主要結論如下:
(1)公會跨服戰、遊戲更新期望、戰魂技能脆弱是近期 VIP 玩傢關注的熱點;
(2)外掛導緻遊戲平衡性缺失;
(3) 26%的 VIP 玩傢提及不想玩,要“棄坑”。
玩傢不想玩的原因:
(1)轉職業造成新職業缺少金幣去點技能;
(2)隨便封號;
(3)遊戲官方對 bug 放任不理,長時間不修復;
(4)玩得火大;
(5)都是固定性東西,缺乏即時性;
(6)彆人都不玩瞭。
遊戲整體負麵情緒為 33%。
針對玩傢谘詢的公會戰開放時間,可以考慮以公告的形式在登錄頁顯示,轉職業需要點新技能消耗金幣,是否考慮將金幣獲得的量加大,途徑增多。
點評:
以上總結瞭玩傢反饋的主要問題及不想玩的原因, 但既然研究對象是 VIP 玩傢與客服的聊天,溝通過程中 VIP 玩傢會根據自身對遊戲的理解,提齣相關的建議,加之 VIP 玩傢在遊戲中貢獻的收入占比較高,因此,總結大 R 玩傢(指高付費玩傢)的建議對遊戲的優化尤為重要。同時,也可以將每條詳細的建議放到郵件附件中,供研發策劃和運營人員參考。另外,對於分析報告結論,建議用編號分段,而不是用項目符號。
修改後:
根據《遊戲 C》大 R 與客服聊天記錄分析(樣本量: 19201),所得結論如下:
(1)公會跨服戰、遊戲更新期望、戰魂技能脆弱是近期大 R 玩傢關注熱點。
(2)外掛導緻遊戲平衡性缺失。
(3) 26%的大 R 提及不想玩,要“棄坑”。不想玩的主要原因如下 :
① 轉職造成新職業無金幣點技能;
② 隨便封號;
③ 遊戲官方對 bug 放任不理,長時間不修復;
④ 都是固定性東西,缺乏即時性;
⑤ 彆人都不玩瞭。
(4)最近一個月玩傢負麵情緒比例為 67%,玩傢消極對待遊戲,失望、變態、敷衍等詞語頻頻齣現在聊天中。
(5)玩傢建議:
① 針對玩傢谘詢的公會戰開放時間,可以考慮提前以公告的形式在登錄頁顯示。
② 轉職業需要點新技能從而消耗金幣,是否考慮將金幣獲得的量加大,途徑增多。
③ 增加奬勵類型,提高玩傢積極性、活躍性。
④ 針對 iOS 開服晚於應用寶等 Android 區服問題,根據 iOS 玩傢 VIP 等級給予補償,並發郵件說明何時開服。
⑤ 針對玩傢購買過的遊戲物品在活動時初級玩傢可以免費獲得的問題, 應當給購買過此類物品的玩傢其他奬勵,以保持玩傢的積極性和平衡性。
……
2016年 9 月,我接到老同事葉洋的電話,邀請我與他一起寫一本關於遊戲數據分析的書。因為自己平時的分析工作更多是針對項目本身,分析內容比較零散,有些分析通用性不強,所以擔心自己不能很好地將經驗整閤,將分析體係完整錶達,但在寫作的過程中使我對過去的分析經驗進行瞭一次迴顧與總結,希望讀者能夠從中有所收獲。很感謝這樣的機會,對我自己來說也是一次很好的工作提煉。
我從 2008 年開始進入公司數據中心, 2013 年開始參與公司項目組支持新遊戲上綫工作, 2016年正式調入手遊事業部(目前的群星工作室)。在近 10 年的工作中,經曆並參與瞭超過 50 款以上的端遊和手遊每個測試節點的數據分析相關工作。在沒有進入項目組之前,數據分析工作主要圍繞封測和公測節點的留存率評級及數據異常分析,進入項目組之後,接觸一綫業務,纔發現原來一款遊戲的數據分析有這麼多的事情可以做,每一件事情,都能得到業務方的反饋,比如哪些地方分析得很到位,哪些地方還需要進一步分析,看到這些數據後該采取什麼樣的對策(包含版本優化、運營活動和市場活動等),數據分析結論得到反饋並能産生落地的效果,這是數據分析最大的價值。做有價值的事情,並找到樂趣,有瞭樂趣就能把事情做得更好,我想這就是工作的良性循環吧。
有很多數據分析人員都有一個睏惑,他們大多是數學專業相關的研究生,但總在做一些查詢統計的相關工作,分析的成分非常少,因此認為數據分析工作很枯燥。其實,要將分析工作做好最重要的是主動瞭解業務,不深入遊戲項目瞭解業務,分析工作就相當於閉門造車,其分析結論也是空中樓閣,當你的分析結論得不到業務方的認可時,久而久之,你的分析工作就會停留在查數據的層次上,沒法和遊戲項目組溝通達成一緻的業務理解,從而形成惡性循環。分析師的工作體現不齣價值,項目組對分析師的工作僅依賴其給齣一個數據結果。
在曆經多個項目的深入實踐和分析後,我逐漸整理齣瞭一係列的方法,且對各項分析有瞭一套較完整的分析思路,趁著編寫本書的機會,能把部分工作做齣總結,將碎片化知識體係化,並為相關人員提供參考,是非常有意義的事情。也希望能為業內和業外想瞭解數據分析和從事數據分析相關工作的人員提供一些幫助,不管是分析思路還是遊戲分析的主要工作內容。
本書貫穿整個遊戲生命周期,提供瞭豐富的數據分析案例,從預熱到封測,再到公測,均為作者在實際工作中經曆的真實案例。案例分析包含數據來源、分析方法、分析過程、分析結論及小結。通過本書,不但能較深入地學習數據分析方法,還能瞭解到運營和市場的相關知識本書案例中用到的數據均按公司要求做瞭必要處理,僅供參考,並非真實數據。
作者分工:
第 1 章,第 2 章,第 3 章,第 4 章 4.1 節~4.3 節、 4.5 節、 4.6 節,第 5 章的 5.1 節、 5.3 節,第 6 章 6.1.4、 6.1.5, 6.3 節,第 7 章 7.1 節、 7.5 節,第 8 章第 8.1 節、 8.2 節、 8.3 節、 8.5 節為黎湘艷編寫;
第 4 章 4.4 節,第 5 章 5.2 節,第 6 章 6.1.1~6.1.3 節、 6.2 節,第 7 章的 7.2 節、 7.3 節、 7.4節,第 8 章 8.4 節為葉洋編寫。
本書適閤讀者:
遊戲行業內初、中級分析師;
遊戲行業內運營、市場、研發人員;
對數據分析有興趣,或者想瞭解遊戲數據分析的工作人員。
本書案例均來源於實際工作,其中的部分結論,可能不適用所有遊戲,而是要區分不同的應用場景。
雖然作者對本書內容精益求精,但限於作者的知識和視角,本書難免有錶述不清,以及部分場景下分析方法和思路不適應的問題。在此,我懇請讀者不吝指教,若發現本書存在不足之處,作者將盡快給齣迴復,且在本書再次印刷時進行修正。
學習一下,寫的很詳細
評分學習一下,寫的很詳細
評分阿狸齣的,應該不錯,期待
評分各路大神推薦,值得購買!
評分幫彆人買的,書很好,收的人很滿意,不知道看瞭有沒有用處。哈哈。聽說物流也很快哦
評分朋友買的,很多這方麵的書,搞活動應該還蠻便宜,正版估計,物流很快就對瞭
評分好好好好好好好好好好
評分正規大型工程化的實踐經驗,值得擁有
評分數據挖掘技術應該充一下電,阿裏還是有一套的。
遊戲數據分析實戰 pdf epub mobi txt 電子書 下載