設計數據密集型應用(影印版) [Designing Data-Intensive Applications] pdf epub mobi txt 電子書 下載 2025

圖書介紹


設計數據密集型應用(影印版) [Designing Data-Intensive Applications]

簡體網頁||繁體網頁
Martin Kleppmann 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-26


類似圖書 點擊查看全場最低價

齣版社: 東南大學齣版社
ISBN:9787564173852
版次:1
商品編碼:12186665
包裝:平裝
外文名稱:Designing Data-Intensive Applications
開本:16開
齣版時間:2017-10-01
用紙:膠版紙

設計數據密集型應用(影印版) [Designing Data-Intensive Applications] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

相關圖書



設計數據密集型應用(影印版) [Designing Data-Intensive Applications] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

設計數據密集型應用(影印版) [Designing Data-Intensive Applications] pdf epub mobi txt 電子書 下載



具體描述

內容簡介

書中包含以下內容:
? 深入分析你已經在使用的係統,並學習如何更高效地使用和運維這些係統
? 通過識彆不同工具的優缺點,作齣更明智的決策
? 瞭解一緻性、可伸縮性、容錯性和復雜度之間的權衡
? 理解分布式係統研究,這些研究是現代數據庫構建的基石
? 走到一些主流在綫服務的幕後,學習它們的架構

作者簡介

Martin Kleppmann,是英國劍橋大學的一名分布式係統研究員。在此之前他曾是軟件工程師和企業傢,在 Linkedin 和 Rapportive 工作過,從事大規模數據基礎設施相關的工作。Martin 經常在大會做演講,寫博客,也是開源貢獻者。

精彩書評

“這本書太棒瞭,它在分布式係統理論和實際工程之間的巨大鴻溝上架起瞭一座橋梁。多希望十年前就能讀到這本書,那麼這些年來我犯的很多錯誤就都能避免瞭。”
——Jay Kreps(Apache Kafka 創始人,Confluent CEO)
“這是一本軟件工程師的必讀之作。《設計數據密集型應用》是能夠連接理論和實踐的稀有資料,它能幫助開發者在設計和實現數據基礎設施及係統的時候作齣明智的決策。”
——Kevin Scoot(微軟CTO)

目錄

Part I. Foundations of Data Systems
1. Reliable, Scalable, and Maintainable Applications 3
Thinking About Data Systems 4
Reliability 6
Hardware Faults 7
Software Errors 8
Human Errors 9
How Important Is Reliability? 10
Scalability 10
Describing Load 11
Describing Performance 13
Approaches for Coping with Load 17
Maintainability 18
Operability: Making Life Easy for Operations 19
Simplicity: Managing Complexity 20
Evolvability: Making Change Easy 21
Summary 22
2. Data Models and Query Languages 27
Relational Model Versus Document Model 28
The Birth of NoSQL 29
The Object-Relational Mismatch 29
Many-to-One and Many-to-Many Relationships 33
Are Document Databases Repeating History? 36
Relational Versus Document Databases Today 38
Query Languages for Data 42
Declarative Queries on the Web 44
MapReduce Querying 46
Graph-Like Data Models 49
Property Graphs 50
The Cypher Query Language 52
Graph Queries in SQL 53
Triple-Stores and SPARQL 55
The Foundation: Datalog 60
Summary 63
3. Storage and Retrieval 69
Data Structures That Power Your Database 70
Hash Indexes 72
SSTables and LSM-Trees 76
B-Trees 79
Comparing B-Trees and LSM-Trees 83
Other Indexing Structures 85
Transaction Processing or Analytics? 90
Data Warehousing 91
Stars and Snowflakes: Schemas for Analytics 93
Column-Oriented Storage 95
Column Compression 97
Sort Order in Column Storage 99
Writing to Column-Oriented Storage 101
Aggregation: Data Cubes and Materialized Views 101
Summary 103
4. Encoding and Evolution 111
Formats for Encoding Data 112
Language-Specific Formats 113
JSON, XML, and Binary Variants 114
Thrift and Protocol Buffers 117
Avro 122
The Merits of Schemas 127
Modes of Dataflow 128
Dataflow Through Databases 129
Dataflow Through Services: REST and RPC 131
Message-Passing Dataflow 136
Summary 139
Part II. Distributed Data
5. Replication 151
Leaders and Followers 152
Synchronous Versus Asynchronous Replication 153
Setting Up New Followers 155
Handling Node Outages 156
Implementation of Replication Logs 158
Problems with Replication Lag 161
Reading Your Own Writes 162
Monotonic Reads 164
Consistent Prefix Reads 165
Solutions for Replication Lag 167
Multi-Leader Replication 168
Use Cases for Multi-Leader Replication 168
Handling Write Conflicts 171
Multi-Leader Replication Topologies 175
Leaderless Replication 177
Writing to the Database When a Node Is Down 177
Limitations of Quorum Consistency 181
Sloppy Quorums and Hinted Handoff 183
Detecting Concurrent Writes 184
Summary 192
6. Partitioning 199
Partitioning and Replication 200
Partitioning of Key-Value Data 201
Partitioning by Key Range 202
Partitioning by Hash of Key 203
Skewed Workloads and Relieving Hot Spots 205
Partitioning and Secondary Indexes 206
Partitioning Secondary Indexes by Document 206
Partitioning Secondary Indexes by Term 208
Rebalancing Partitions 209
Strategies for Rebalancing 210
Operations: Automatic or Manual Rebalancing 213
Request Routing 214
Parallel Query Execution 216
Summary 216
7. Transactions 221
The Slippery Concept of a Transaction 222
The Meaning of ACID 223
Single-Object and Multi-Object Operations 228
Weak Isolation Levels 233
Read Committed 234
Snapshot Isolation and Repeatable Read 237
Preventing Lost Updates 242
Write Skew and Phantoms 246
Serializability 251
Actual Serial Execution 252
Two-Phase Locking (2PL) 257
Serializable Snapshot Isolation (SSI) 261
Summary 266
8. The Trouble with Distributed Systems 273
Faults and Partial Failures 274
Cloud Computing and Supercomputing 275
Unreliable Networks 277
Network Faults in Practice 279
Detecting Faults 280
Timeouts and Unbounded Delays 281
Synchronous Versus Asynchronous Networks 284
Unreliable Clocks 287
Monotonic Versus Time-of-Day Clocks 288
Clock Synchronization and Accuracy 289
Relying on Synchronized Clocks 291
Process Pauses 295
Knowledge, Truth, and Lies 300
The Truth Is Defined by the Majority 300
Byzantine Faults 304
System Model and Reality 306
Summary 310
9. Consistency and Consensus 321
Consistency Guarantees 322
Linearizability 324
What Makes a System Linearizable? 325
Relying on Linearizability 330
Implementing Linearizable Systems 332
The Cost of Linearizability 335
Ordering Guarantees 339
Ordering and Causality 339
Sequence Number Ordering 343
Total Order Broadcast 348
Distributed Transactions and Consensus 352
Atomic Commit and Two-Phase Commit (2PC) 354
Distributed Transactions in Practice 360
Fault-Tolerant Consensus 364
Membership and Coordination Services 370
Summary 373
Part III. Derived Data
10. Batch Processing 389
Batch Processing with Unix Tools 391
Simple Log Analysis 391
The Unix Philosophy 394
MapReduce and Distributed Filesystems 397
MapReduce Job Execution 399
Reduce-Side Joins and Grouping 403
Map-Side Joins 408
The Output of Batch Workflows 411
Comparing Hadoop to Distributed Databases 414
Beyond MapReduce 419
Materialization of Intermediate State 419
Graphs and Iterative Processing 424
High-Level APIs and Languages 426
Summary 429
11. Stream Processing 439
Transmitting Event Streams 440
Messaging Systems 441
Partitioned Logs 446
Databases and Streams 451
Keeping Systems in Sync 452
Change Data Capture 454
Event Sourcing 457
State, Streams, and Immutability 459
Processing Streams 464
Uses of Stream Processing 465
Reasoning About Time 468
Stream Joins 472
Fault Tolerance 476
Summary 479
12. The Future of Data Systems 489
Data Integration 490
Combining Specialized Tools by Deriving Data 490
Batch and Stream Processing 494
Unbundling Databases 499
Composing Data Storage Technologies 499
Designing Applications Around Dataflow 504
Observing Derived State 509
Aiming for Correctness 515
The End-to-End Argument for Databases 516
Enforcing Constraints 521
Timeliness and Integrity 524
Trust, but Verify 528
Doing the Right Thing 533
Predictive Analytics 533
Privacy and Tracking 536
Summary 543
Glossary 553
Index 559


設計數據密集型應用(影印版) [Designing Data-Intensive Applications] 下載 mobi epub pdf txt 電子書

設計數據密集型應用(影印版) [Designing Data-Intensive Applications] pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

好書沒的說,要好好看。

評分

值得花時間好好學習一下的好書

評分

 通過具體的例子、很少的理論以及兩款成熟的Python框架:Scikit-Learn和TensorFlow,作者Aurélien Géron會幫助你掌握構建智能係統所需要的概念和工具。你將會學習到各種技術,從簡單的綫性迴歸及發展到深度神經網絡。每章的練習有助於你運用所學到的知識,你隻需要有一些編程經驗就行瞭。

評分

本書寫的很好,讀這本書發現一些之前不太理解的地方,而且解釋很好。

評分

挺好的一本英文書,接下來就好好學習瞭

評分

書寫得很詳細,比較適閤新手入門,項目也比較使用,內容算是很新的瞭

評分

幫老公買的,包裝不錯,送貨速度快

評分

蠻不錯的 挺好的 很不錯 速度快 服務好 相信京東

評分

  産品不重要,快遞員張永彭師傅,真心好!

類似圖書 點擊查看全場最低價

設計數據密集型應用(影印版) [Designing Data-Intensive Applications] pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


設計數據密集型應用(影印版) [Designing Data-Intensive Applications] bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有