数值分析Numerical Analysis(第2版) pdf epub mobi txt 电子书 下载 2024

图书介绍


数值分析Numerical Analysis(第2版)

简体网页||繁体网页
苏岐芳 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-17

类似图书 点击查看全场最低价

出版社: 中国铁道出版社
ISBN:9787113228002
版次:2
商品编码:12179634
包装:平装
开本:16开
出版时间:2017-02-01
用纸:胶版纸
页数:344
字数:431

数值分析Numerical Analysis(第2版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



数值分析Numerical Analysis(第2版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

数值分析Numerical Analysis(第2版) pdf epub mobi txt 电子书 下载



具体描述

编辑推荐

本书采用中、英两种语言编写,各章都配有大量的习题及上机实验题目,并附有部分习题的参考答案及数学专业软件Mathematica和Matlab的简介。

内容简介

本书介绍了科学计算中常用数值分析的基础理论及计算机实现方法。主要内容包括:误差分析、插值、函数逼近、数值积分和数值微分、非线性方程的数值解法、线性方程组的直接解法、线性方程组的迭代解法、常微分方程的数值解法及相应的上机实验内容等。各章都配有大量的习题及上机实验题目,并附有部分习题的参考答案及数学专业软件Mathematica和Matlab的简介。
本书采用中、英两种语言编写,适合作为数学、计算机和其他理工类各专业本科“数值分析(计算方法)”双语课程的教材或参考书,也可供从事科学计算的相关技术人员参考。

作者简介

苏岐芳,副教授,台州学院数学与信息工程学院副院长

目录

1 Error Analysis ......1
1.1 Introduction ............ 1
1.2 Sources of Errors .... 2
1.3 Errors and Significant Digits .......... 4
1.4 Error Propagation ... 8
1.5 Qualitative Analysis and Control of Errors ............ 9
1.5.1 Ill-condition Problem and Condition Number....................... 9
1.5.2 The Stability of Algorithm .. 10
1.5.3 The Control of Errors .......... 11
1.6 Computer Experiments................. 14
1.6.1 Functions Needed in the Experiments by Mathematica ...... 14
1.6.2 Experiments by Mathematica...................... 14
1.6.3 Functions Needed in the Experiments by Matlab................ 16
1.6.4 Experiments by Matlab ....... 16
Exercises 1..................... 17
2 Interpolating.......19
2.1 Introduction .......... 20
2.2 Basic Concepts ..... 21
2.3 Lagrange Interpolation ................. 22
2.3.1 Linear and Parabolic Interpolation .............. 22
2.3.2 Lagrange Interpolation Polynomial............. 24
2.3.3 Interpolation Remainder and Error Estimate....................... 25
2.4 Divided-differences and Newton Interpolation .... 29
2.5 Differences and Newton Difference Formulae..... 33
2.5.1 Differences .. 33
2.5.2 Newton Difference Formulae ...................... 35
2.6 Hermite Interpolation ................... 38
2.7 Piecewise Low Degree Interpolation.................... 42
2.7.1 Ill-posed Properties of High Degree Interpolation .............. 42
2.7.2 Piecewise Linear Interpolation .................... 43
2.7.3 Piecewise Cubic Hermite Interpolation....... 44
2.8 Cubic Spline Interpolation............ 45
2.8.1 Definition of Cubic Spline... 45
2.8.2 The Construction of Cubic Spline ............... 46
2.9 Computer Experiments................. 49
2.9.1 Functions Needed in the Experiments by Mathematica ...... 49
2.9.2 Experiments by Mathematica...................... 50
2.9.3 Experiments by Matlab ....... 56
Exercises 2................... 64
3 Best Approximation ...................68
3.1 Introduction .......... 68
3.2 Norms ................... 69
3.2.1 Vector Norms ...................... 69
3.2.2 Matrix Norms ...................... 74
3.3 Spectral Radius..... 76
3.4 Best Linear Approximation .......... 79
3.4.1 Basic Concepts and Theories....................... 79
3.4.2 Best Linear Approximation . 81
3.5 Discrete Least Squares Approximation ................ 82
3.6 Least Squares Approximation and Orthogonal Polynomials........ 87
3.7 Rational Function Approximation 94
3.7.1 Continued Fractions ............ 94
3.7.2 Padé Approximation............ 97
3.8 Computer Experiments................. 99
3.8.1 Functions Needed in The Experiments by Mathematica..... 99
3.8.2 Experiments by Mathematica.................... 100
3.8.3 Functions Needed in The Experiments by Matlab ............ 106
3.8.4 Experiments by Matlab ..... 106
Exercises 3................. 111
4 Numerical Integration and Differentiation ........114
4.1 Introduction ........ 115
4.2 Interpolatory Quadratures........... 116
4.2.1 Interpolatory Quadratures.. 116
4.2.2 Degree of Accuracy........... 117
4.3 Newton-Cotes Quadrature Formula.................... 118
4.4 Composite Quadrature Formula . 123
4.4.1 Composite Trapezoidal Rule ..................... 123
4.4.2 Composite Simpson’s Rule ....................... 124
4.5 Romberg Integration................... 125
4.5.1 Recursive Trapezoidal Rule ...................... 125
4.5.2 Romberg Algorithm .......... 126
4.5.3 Richardson’s Extrapolation ....................... 128
4.6 Gaussian Quadrature Formula .... 129
4.7 Multiple Integrals ....................... 134
4.8 Numerical Differentiation........... 135
4.8.1 Numerical Differentiation . 135
4.8.2 Differentiation Polynomial Interpolation .. 137
4.8.3 Richardson’s Extrapolation ....................... 141
4.9 Computer Experiments............... 144
4.9.1 Functions Needed in the Experiments by Mathematica .... 144
4.9.2 Experiments by Mathematica.................... 144
4.9.3 Experiments by Matlab ..... 149
Exercises 4................... 153
5 Solution of Nonlinear Equations ......................156
5.1 Introduction ........ 156
5.2 Basic Theories .... 158
5.3 Bisection Method 159
5.4 Iterative Method and Its Convergence................ 162
5.4.1 Fixed Point and Iteration ... 162
5.4.2 Global Convergence.......... 163
5.4.3 Local Convergence............ 165
5.4.4 Order of Convergence ....... 167
5.5 Accelerating Convergence.......... 168
5.6 Newton’s Method ....................... 170
5.6.1 Newton’s Method and Its Convergence .... 170
5.6.2 Reduced Newton Method and Newton’s Descent Method ....................... 172
5.6.3 The Case of Multiple Roots....................... 173
5.7 Secant Method and Muller Method .................... 174
5.7.1 Secant Method................... 174
5.7.2 Muller Method................... 175
5.8 Systems of Nonlinear Equations. 176
5.9 Computer Experiments............... 179
5.9.1 Functions Needed in the Experiments by Mathematica .... 179
5.9.2 Experiments by Mathematica.................... 180
5.9.3 Experiments by Matlab ..... 185
Exercises 5................. 188
6 Direct Methods for Solving Linear Systems ....191
6.1 Introduction ........ 192
6.2 Gaussian Elimination.................. 193
6.2.1 Basic Gaussian Elimination....................... 193
6.2.2 Triangular Decomposition. 197
6.3 Gaussian Elimination with Column Pivoting ..... 200
6.4 Methods of the Triangular Decomposition......... 202
6.4.1 The Direct Methods of The Triangular Decomposition .... 202
6.4.2 The Square Root Method .. 203
6.4.3 The Speedup Method......... 206
6.5 Analysis of Round-off Errors ..... 210
6.5.1 Condition Number............. 210
6.5.2 Iterative Refinement .......... 214
6.6 Computer Experiments............... 215
6.6.1 Functions Needed in the Experiments by Mathematica .... 215
6.6.2 Experiments by Mathematica.................... 215
6.6.3 Functions Needed in the Experiments by Matlab.............. 222
6.6.4 Experiments by Matlab ..... 222
Exercises 6................... 227
7 Iterative Techniques for Solving Linear Systems ....................230
7.1 Introduction ........ 231
7.2 Basic Iterative Methods .............. 233
7.2.1 Jacobi Method ................... 234
7.2.2 Gauss-Seidel Method ........ 236
7.2.3 SOR Method...................... 237
7.3 Iterative Method Convergence ... 238
7.3.1 Basic Theorems ................. 238
7.3.2 Some Special Systems of Equations.......... 243
7.4 Computer Experiments............... 247
7.4.1 Functions Needed in The Experiments by Mathematica... 247
7.4.2 Experiments by Mathematica.................... 247
7.4.3 Experiments by Matlab ..... 251
Exercises 7................... 255
8 Numerical Solution of Ordinary Differential Equations ............258
8.1 Introduction ........ 258
8.2 The Existence and Uniqueness of Solutions....... 260
8.3 Taylor-Series Method................. 262
8.4 Euler’s Method ... 263
8.5 Single-step Methods ................... 267
8.5.1 Single-step Methods.......... 267
8.5.2 Local Truncation Error ...... 267
8.6 Runge-Kutta Methods ................ 268
8.6.1 Second-Order Runge-Kutta Method.......... 268
8.6.2 Fourth-Order Runge-Kutta Method........... 270
8.7 Multistep Methods...................... 271
8.7.1 General Formulas of Multistep Methods... 272
8.7.2 Adams Explicit and Implicit Formulas...... 273
8.8 Systems and Higher-Order Differential Equations..................... 275
8.8.1 Vector Notation ................. 276
8.8.2 Taylor-Series Method for Systems............ 278
8.8.3 Fourth-Order Runge-Kutta Formula for Systems.............. 279
8.9 Computer Experiments............... 281
数值分析Numerical Analysis(第2版) 电子书 下载 mobi epub pdf txt

数值分析Numerical Analysis(第2版) pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

数值分析Numerical Analysis(第2版) pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


数值分析Numerical Analysis(第2版) bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有