自己動手寫神經網絡 pdf epub mobi txt 電子書 下載 2024

圖書介紹


自己動手寫神經網絡

簡體網頁||繁體網頁
葛一鳴 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-25


類似圖書 點擊查看全場最低價

齣版社: 人民郵電齣版社
ISBN:9787115462015
版次:1
商品編碼:12169369
品牌:異步圖書
包裝:平裝
開本:16開
齣版時間:2017-09-01
用紙:膠版紙
頁數:182
正文語種:中文

自己動手寫神經網絡 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



自己動手寫神經網絡 epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

自己動手寫神經網絡 pdf epub mobi txt 電子書 下載



具體描述

編輯推薦

  AlphaGo戰勝李世石,標誌著新一輪人工智能的浪潮已經來襲。  而你是否已經做好迎接新的人工智能技術的準備?  《自己動手寫神經網絡》將帶你一探作為AlphaGo基石的人工神經網絡。  《自己動手寫神經網絡》不局限於紙上談兵,我們用代碼詮釋一切。  《自己動手寫神經網絡》可能改變你對人工智能的態度。  深入講解人工神經網絡的工作原理,並且能夠動手實踐人工神經網絡  書力求通俗易懂,使用盡可能簡單的語言描述人工神經網絡的原理與理論。  《自己動手寫神經網絡》力求以具體實現與應用為導嚮,除瞭理論介紹外,每一章節的應用和實踐都有具體的實現詳解。  全書使用Java作為主要語言,與Matlab等語言不同的是:Java語言是目前企業級軟件開發zui為流行的語言,因此,使用Java實現的神經網絡具備更強的係統集成能力與實踐能力。由於Java語言本身通俗易懂,在基本語法上與C/C++類似,因此,本書同樣適閤沒有Java基礎的程序員。

內容簡介

  《自己動手寫神經網絡》講解通俗易懂,使用簡單的語言描述人工神經網絡的原理,並力求以具體實現與應用為導嚮,除瞭理論介紹外,每一章節的應用和實踐都有具體的實例實現,讓讀者達到學以緻用。《自己動手寫神經網絡》分為11章,主要內容為:簡單的人工神經網絡模型和理論應用;介紹瞭一個基於Java的人工神經網絡框架Neuroph;介紹瞭基於Neuroph開發一個簡單的人工神經網絡係統—感知機;介紹瞭ADALINE網絡以及使用Neuroph實現ADALINE神經網絡;介紹瞭BP神經網絡的基本原理和具體實現;介紹瞭BP神經網絡的具體實踐應用;介紹瞭Hopfield網絡的原理、實踐和應用;介紹瞭雙嚮聯想網絡BAM的原理、實踐和應用;介紹瞭競爭學習網絡,特彆是SOM網絡以及相關算法與實現;介紹瞭PCA方法以及與PCA方法等價的PCA神經網絡。  《自己動手寫神經網絡》適閤以下類型的讀者:對神經網絡感興趣,期望可以初步瞭解神經網絡原理的讀者;有一定編程經驗,期望學習和掌握神經網絡的程序員;期望對神經網絡進行實際應用的工程人員;任何一名神經網絡愛好者。

作者簡介

  葛一鳴,浙江工業大學碩士,國傢認證係統分析師,Oracle OCP。長期從事Java軟件開發工作,對Java技術、人工智能、神經網絡、數據挖掘等技術有濃厚興趣。  現著有《自己動手寫神經網絡》《Java程序性能優化》《實戰Java虛擬機》《實戰Java高並發程序設計》。

目錄

第1章 人工神經網絡概述 1
1.1 人工智能與神經網絡簡史 1
1.1.1 人工智能的誕生:1943~1956年 2
1.1.2 黃金發展期:1956~1974年 3
1.1.3 第一次低榖期:1974~1980年 4
1.1.4 繁榮期:1980~1987年 5
1.1.5 第二次低榖期:1987~1993年 5
1.1.6 再次崛起:1993年至今 6
1.2 生物學研究對神經網絡的影響 6
1.3 大數據對人工智能的影響 8
1.4 計算機硬件發展對人工智能的影響 9
1.5 計算機軟件發展對人工智能的影響 9
1.6 人工智能的廣泛應用 10
第2章 人工神經元模型與感知機 12
2.1 人工神經元組成要素 12
2.1.1 人工神經元的基本結構 12
2.1.2 傳輸函數類型 13
2.2 感知機 15
2.2.1 使用感知機識彆水果 15
2.2.2 讓感知機記憶邏輯與 17
2.2.3 感知機的學習算法 18
2.3 總結 20
第3章 神經網絡框架Neuroph介紹 21
3.1 Neuroph是什麼 21
3.2 Neuroph係統的構成 22
3.3 Neuroph Studio的功能展示 22
3.3.1 使用Neuroph Studio構造感知機處理邏輯與 23
3.3.2 使用Neuroph Studio進行動物分類實驗 28
3.4 Neuroph Library架構分析 34
3.4.1 Neuroph Library核心架構 35
3.4.2 Neuron神經元 35
3.4.3 Layer層 36
3.4.4 NeuralNetwork神經網絡 37
3.4.5 LearningRule學習算法 37
3.4.6 DataSet和DataSetRow 38
3.5 Neuroph開發環境搭建 38
3.5.1 基礎平颱——Java介紹以及安裝 39
3.5.2 包管理工具——Maven安裝 39
3.5.3 開發工具——Eclipse安裝 40
3.6 總結 41
第4章 使用Java實現感知機及其應用 42
4.1 第一個Neuroph程序——使用感知機記憶邏輯與 42
4.1.1 創建感知機網絡 42
4.1.2 理解輸入神經元InputNeuron 45
4.1.3 理解貝葉斯神經元BiasNeuron 45
4.1.4 step傳輸函數是如何實現的 46
4.2 讓感知機理解坐標係統 47
4.2.1 感知機網絡的設計 47
4.2.2 感知機網絡的實現 47
4.3 感知機學習算法與Java實現 49
4.3.1 感知機學習規則的實現 50
4.3.2 一個自學習的感知機實現——SimplePerceptron 51
4.3.3 小試牛刀——SimplePerceptron學習邏輯與 52
4.3.4 訓練何時停止 53
4.4 再看坐標點位置識彆 55
4.5 感知機的極限——異或問題 57
4.6 總結 58
第5章 ADALINE網絡及其應用 59
5.1 ADALINE網絡與LMS算法 59
5.2 ADALINE網絡的Java實現 60
5.3 使用ADALINE網絡識彆數字 62
5.3.1 印刷體數字識彆問題概述 62
5.3.2 代碼實現 63
5.3.3 加入噪點後再嘗試 66
5.4 總結 67
第6章 多層感知機和BP學習算法 68
6.1 多層感知機的結構與簡單實現 68
6.1.1 多層感知機結構的提齣 68
6.1.2 定義多層感知機處理異或問題 69
6.1.3 多層感知機的簡單實現 71
6.2 多層感知機學習算法——BP學習算法 74
6.2.1 BP學習算法理論介紹 74
6.2.2 BP學習算法與BP神經網絡的實現 77
6.3 BP神經網絡細節優化 84
6.3.1 隨機化權值的方式 84
6.3.2 Sigmoid函數導數的探討 86
6.4 帶著算法重迴異或問題 87
6.5 總結 89
第7章 BP神經網絡的案例 90
7.1 奇偶性判彆問題 90
7.1.1 問題描述 90
7.1.2 代碼實現 90
7.2 函數逼近 94
7.2.1 問題描述 94
7.2.2 代碼實現 94
7.3 動物分類 99
7.3.1 問題描述 99
7.3.2 問題分析 100
7.3.3 代碼實現 102
7.4 簡單的語音識彆 104
7.4.1 問題描述 104
7.4.2 代碼實現 104
7.5 MNIST手寫體識彆 106
7.5.1 問題描述 106
7.5.2 問題分析 108
7.5.3 代碼實現 108
7.6 總結 112
第8章 Hopfield神經網絡 113
8.1 Hopfield神經網絡的結構和原理 113
8.1.1 Hopfield網絡的結構 113
8.1.2 網絡吸引子 114
8.1.3 網絡權值的設計 115
8.2 網絡的存儲容量 117
8.3 Hopfield神經網絡的Java實現 118
8.3.1 Hopfield網絡構造函數 118
8.3.2 Hopfield網絡的神經及其特點 119
8.3.3 Hopfield網絡學習算法 120
8.4 Hopfield網絡還原帶有噪點的字符 121
8.5 Hopfield網絡的自聯想案例 123
8.6 總結 126
第9章 BAM雙嚮聯想記憶網絡 127
9.1 BAM網絡的結構與原理 127
9.2 BAM網絡的學習算法 128
9.3 使用Java實現BAM網絡 129
9.3.1 BAM網絡的靜態結構 129
9.3.2 BAM網絡學習算法 130
9.3.3 BAM網絡的運行 131
9.4 BAM網絡的應用 133
9.4.1 場景描述——人名與電話 133
9.4.2 數據編碼設計 134
9.4.3 具體實現 136
9.5 總結 140
第10章 競爭學習網絡 141
10.1 競爭學習的基本原理 141
10.1.1 嚮量的相似性 142
10.1.2 競爭學習規則 143
10.2 自組織映射網絡SOM的原理 144
10.2.1 SOM網絡的生物學意義 144
10.2.2 SOM網絡的結構 144
10.2.3 SOM網絡的運行原理 145
10.2.4 有關初始化權重的問題 146
10.3 SOM網絡的Java實現 147
10.3.1 SOM網絡拓撲結構的實現 147
10.3.2 SOM網絡的初始權值設置 150
10.3.3 Kohonen算法的實現 153
10.4 SOM網絡的應用 157
10.4.1 使用SOM網絡進行動物聚類 158
10.4.2 使用SOM網絡進行城市聚類 161
10.5 總結 164
第11章 PCA神經網絡 165
11.1 PCA方法概述 165
11.1.1 PCA方法數學背景 166
11.1.2 PCA計算示例 167
11.2 PCA神經網絡學習算法 170
11.2.1 Oja算法 170
11.2.2 Sanger算法 171
11.3 基於Neuroph實現PCA網絡 172
11.3.1 Oja算法的實現 172
11.3.2 Sanger算法的實現 177
11.4 使用PCA網絡預處理MNIST手寫體數據集 178
11.5 總結 181
自己動手寫神經網絡 下載 mobi epub pdf txt 電子書

自己動手寫神經網絡 pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

很厚的一本書,同學推薦,買書就到京東

評分

未看 618優惠很多 值得買

評分

好好學習,天天嚮上嘿嘿嘿

評分

不學習就落後,加油!努力學習!

評分

能解決簡單的問題,但並非真正的人工智能。

評分

ai的很不錯的一個框架,開始跟上潮流

評分

書籍不錯,有塑封,這次六一八優惠很給力,一下子買瞭好多。

評分

京東快遞真的十分給力,昨天買的,今天就到瞭?

評分

同事推薦購買的圖書,剛到還沒開始看,看完迴來補評論。

類似圖書 點擊查看全場最低價

自己動手寫神經網絡 pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


自己動手寫神經網絡 bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 windowsfront.com All Rights Reserved. 靜流書站 版權所有