内容简介
《考察极端》介绍了数学思维方法的一种形式:考察极端。其中许多内容都是此书首次提出的。比如,取极端破坏反面性质、取极端改进“拟对象”、分界极端、二色链、相关元、累次极端、“多维”极端等,这是此书的特点之一。《考察极端》首次用“考察极端”来代替“极端性原理”的表述,旨在强调如何对极端情形进行考察,进而获得解决一般问题的途径。书中选用了一些数学原创题,这些问题难度适中而又生动有趣,有些问题还是首次公开发表,这是《考察极端》的另一特点。此外,书中对每一个问题,并不是直接给出解答,而是详细分析如何发现其解法,这是此书的又一特点。
《考察极端》适合高等院校数学系师生、中学数学教师、中学生和数学爱好者阅读。
内页插图
目录
序
1 目标极端
1.1 原始元极端
1.2 复合元极端
1.3 特征值极端
习题1
习题1解答
2 相关极端
2.1 条件相关极端元
2.2 目标相关极端元
2.3 整体相关极端元
习题2
习题2解答
3 分界极端
3.1 序列分界
3.2 状态分界
3.3 划分序列
3.4 二色链
习题3
习题3解答
4 优化假设
4.1 取极端元破坏反面性质
4.2 取极端元满足目标要求
4.3 取极端元改进“拟对象”
习题4
习题4解答
5 累次极端
5.1 依次取极端
5.2 “多维”极端
习题5
习题5解答
6 极端构造与否定
6.1 极端构造
6.2 极端否定
习题6
习题6解答
前言/序言
问题是数学的心脏,学数学离不开解题。我国著名数学家华罗庚教授曾说过:如果你读一本数学书,却不做书中的习题,那就犹如入宝山而空手归,因此,如何解题,也就成为了一个千古话题。
国外曾流传着这样一则有趣的故事,说的是当时数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题(这与当今社会截然相反),以至于托勒密一世也想赶这一时髦,学点数学。虽然托勒密一世见多识广,但在学数学上却很吃力,一天,他向欧几里得请教数学问题,听了半天,还是云里雾里不知所云,便忍不住向欧几里得要求道:“你能不能把问题讲得简单点呢?”欧几里得笑着回答:“很抱歉,数学无王者之路。”欧几里得的意思是说,要想学好数学,就必须扎扎实实打好基础,没有捷径可走。后来人们常用这一故事讥讽那些凡事都想投机取巧之人。但从另一个角度想,托勒密一世的要求也未必过分,难道数学就只能是“神来之笔”,不能让其思路来得更自然一些吗?
记得我少年时期上学,每逢学期初发新书的那个时刻是最令我兴奋的,书一到手,总是迫不及待地看看书中有哪些新的内容,一方面是受好奇心的驱使,另一方面也是想测试一下自己,看能不能不用老师教也能读懂书中的内容。但每每都是失望而终:尽管书中介绍的知识都弄明白了,书中的例题也读懂了,但一做书中的练习题,却还是不会。为此,我曾非常苦恼,却又万思不得其解,后来上了大学,更是对课堂中老师那些“神来之笔”惊叹不已,严密的逻辑推理常常令我折服,但我未能理解的是,为什么会想到这么做呢?
20世纪中叶,美国数学教育家G。Polya的数学名著《怎样解题》风靡全球,该书使我受益匪浅。这并不是说,我从书中学到了“怎样解题”,而是它引发了我对数学思维方法的思考。
实际上,数学解题是一项系统工程,有许许多多的因素影响着它的成败。本质的因素有知识、方法(指狭义的方法,即解决问题所使用的具体方法)、能力(指基本能力,即计算能力、推理能力、抽象能力、概括能力等)、经验等,由此构成解题基础;非本质的因素有兴趣、爱好、态度、习惯、情绪、意志、体质等,由此构成解题的主观状态;此外,还受时空、环境、工具的约束,这些构成了解题的客观条件。但是,具有扎实的解题基础,且有较好的客观条件,主观上也做了相应的努力,解题也不一定能获得成功。这是因为,数学中真正标准的、可以程序化的问题(像解一元二次方程)是很少的。解题中,要想把问题中的条件与结论沟通起来,光有雄厚的知识、灵活的方法和成功的解题经验是不够的。为了判断利用什么知识,选用什么方法。就必须对问题进行解剖、识别,对各种信息进行筛选、加工和组装,以创造利用知识、方法和经验的条件,这种复杂的、创造性的分析过程就是数学思维过程,这一过程能否顺利进行,取决于思维方法是否正确。因此,正确的思维方法亦是影响解题成败的重要因素之一。
经验不止一次地告诉我们:知识不足还可以补充,方法不够也可以积累,但若不善思考,即使再有知识和方法,不懂得如何运用它们解决问题,也是枉然,与此相反,掌握了正确的思维方法,知识就不再是孤立的,方法也不再是呆板的,它们都建立了有血有肉的联系,组成了生机勃勃的知识方法体系,数学思维活动也就充满了活力,得到了更完美的发挥与体现。
中学生数学思维方法丛书2:考察极端 电子书 下载 mobi epub pdf txt