數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] pdf epub mobi txt 電子書 下載 2025

圖書介紹


數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics]

簡體網頁||繁體網頁
範劍青,姚琦偉 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-22


類似圖書 點擊查看全場最低價

齣版社: 科學齣版社
ISBN:9787030433985
版次:101
商品編碼:11672614
包裝:平裝
叢書名: 數學名著係列叢書
外文名稱:Mathematics Monograph Series:The Elements of Financial Econometrics
開本:16開
齣版時間:2015-03-01
用紙:膠版紙

數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

相關圖書



數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] pdf epub mobi txt 電子書 下載



具體描述

産品特色

編輯推薦

著名的普林斯頓大學教授傾力打造的精品英文版的金融數學方麵的精品教材。

內容簡介

《數學名著係列叢書:計量金融精要》是一本關於金融計量方麵的基礎用書,提供瞭核心基礎資料,包括金融研究日益增長的科學前沿和金融工業方麵重要的發展情況。《數學名著係列叢書:計量金融精要》對資産定價理論、投資組閤優化和風險管理方法提供瞭簡潔的和緊湊的處理。提供瞭單因素和多因素情況下的時間序列模型技術,在分析財務數據上下文的時候介紹瞭他們的均值和方差。真實的數據分析貫穿全書,是《數學名著係列叢書:計量金融精要》的一個明顯的特徵。

作者簡介

範劍青,美國普林斯頓大學統計與金融工程終身教授,The Annals of Statistics 雜誌主編。1982年畢業於復旦大學數學係,隨後考入中國科學院應用數學所攻讀碩士。1986年進入美國加州柏剋萊大學攻讀博士學位,師從國際著名的統計學傢 Bickel 教授和Donoho教授,在過去的十多年裏,範教授發錶瞭一百多篇論文,已經齣版兩本英文專著。於2004年任 The Annals of Statistics 的主編,成為該雜誌創刊70多年來**的亞裔主編。他還當選為美國統計學會院士(Fellow)、國際數理研究院院士和國際統計研究院院士。2005年齣任中國科學院數學與係統科學研究院統計科學研究中心主任,2006年獲得國傢傑齣海外青年基金。

內頁插圖

目錄

Preface to Mathematics Monograph Series
Preface
Chapter 1 Asset Returns
1.1 Returns
1.1.1 One-period simple returns and gross returns
1.1.2 Multiperiod returns
1.1.3 Log returns and continuously compounding
1.1.4 Adjustment for dividends
1.1.5 Bond yields and prices
1.1.6 Excess returns
1.2 Behavior of?nancial return data
1.2.1 Stylized features of?nancial returns
1.3 E±cient markets hypothesis and statistical models for returns
1.4 Tests related to e±cient markets hypothesis
1.4.1 Tests for white noise
1.4.2 Remarks on the Ljung-Box test
1.4.3 Tests for random walks
1.4.4 Ljung-Box test and Dickey-Fuller test
1.5 Appendix: Q-Q plot and Jarque-Bera test
1.5.1 Q-Q plot
1.5.2 Jarque-Bera test
1.6 Further reading and software implementation
1.7 Exercises

Chapter 2 Linear Time Series Models
2.1 Stationarity
2.2 Stationary ARMA models
2.2.1 Moving average processes
2.2.2 Autoregressive processes
2.2.3 Autoregressive and moving average processes
2.3 Nonstationary and long memory ARMA processes
2.3.1 Random walks
2.3.2 ARIMA model and exponential smoothing
2.3.3 FARIMA model and long memory processes
2.3.4 Summary of time series models
2.4 Model selection using ACF, PACF and EACF
2.5 Fitting ARMA models: MLE and LSE
2.5.1 Least squares estimation
2.5.2 Gaussian maximum likelihood estimation
2.5.3 Illustration with gold prices
2.5.4 A snapshot of maximum likelihood methods
2.6 Model diagnostics: residual analysis
2.6.1 Residual plots
2.6.2 Goodness-of-?t tests for residuals
2.7 Model identi?cation based on information criteria
2.8 Stochastic and deterministic trends
2.8.1 Trend removal
2.8.2 Augmented Dickey-Fuller test
2.8.3 An illustration
2.8.4 Seasonality
2.9 Forecasting
2.9.1 Forecasting ARMA processes
2.9.2 Forecasting trends and momentum of?nancial markets
2.10 Appendix: Time series analysis in R
2.10.1 Start up with R
2.10.2 R-functions for time series analysis
2.10.3 TSA{ an add-on package
2.11 Exercises

Chapter 3 Heteroscedastic Volatility Models
3.1 ARCH and GARCH models
3.1.1 ARCH models
3.1.2 GARCH models
3.1.3 Stationarity of GARCH models
3.1.4 Fourth moments
3.1.5 Forecasting volatility
3.2 Estimation for GARCH models
3.2.1 Conditional maximum likelihood estimation
3.2.2 Model diagnostics
……
Chapter 4 Multivariate Time Series Analysis
Chapter 5 Effcient Portfolios and Capital Asset Pricing Model
Chapter 6 Factor Pricing Models
Chapter 7 Portfolio Allocation and Risk Assessment
Chapter 8 Consumption based CAPM
Chapter 9 Present-value Models
References
Author Index
Subject Index

精彩書摘

  《數學名著係列叢書:計量金融精要》:
  Chapter 1
  Asset Returns The primary goal of investing in a -nancial market is to make pro-ts without taking excessive risks. Most common investments involve purchasing -nancial assets such as stocks, bonds or bank deposits, and holding them for certain periods. Posi- tive revenue is generated if the price of a holding asset at the end of holding period is higher than that at the time of purchase (for the time being we ignore transaction charges). Obviously the size of the revenue depends on three factors: (i) the initial capital (i.e. the number of assets purchased), (ii) the length of holding period, and (iii) the changes of the asset price over the holding period. A successful investment pursues the maximum revenue with a given initial capital, which may be measured explicitly in terms of the so-called return . A return is a percentage de-ned as the change of price expressed as a fraction of the initial price. It turns out that asset returns exhibit more attractive statistical properties than asset prices themselves.
  Therefore it also makes more statistical sense to analyze return data rather than price series.
  1.1 Returns
  Let Pt denote the price of an asset at time t. First we introduce various de-nitions for the returns for the asset.
  1.1.1 One-period simple returns and gross returns
  Holding an asset from time t ? 1 to t, the value of the asset changes from Pt?1 to Pt. Assuming that no dividends paid are over the period. Then the one-period simple return is de-ned as
  It is the pro-t rate of holding the asset from time t ? 1 to t. Often we write Rt = 100Rt%, as 100Rt is the percentage of the gain with respect to the initial capital Pt?1. This is particularly useful when the time unit is small (such as a day or an hour); in such cases Rt typically takes very small values. The returns for lessrisky assets such as bonds can be even smaller in a short period and are often quoted in basis points , which is 10; 000Rt. The one period gross return is de-ned as Pt=Pt?1 = Rt 1. It is the ratio of the new market value at the end of the holding period over the initial market value. 1.1.2 Multiperiod returns
  The holding period for an investment may be more than one time unit. For any integer k > 1, the returns for over k periods may be de-ned in a similar manner.
  For example, the k-period simple return from time t ? k to t is and the k-period gross return is Pt=Pt?k = Rt(k) 1. It is easy to see that the multiperiod returns may be expressed in terms of one-period returns as follows:
  If all one-period returns Rt;   ;Rt?k 1 are small, (1.3) implies an approximation
  This is a useful approximation when the time unit is small (such as a day, an hour or a minute).
  1.1.3 Log returns and continuously compounding
  In addition to the simple return Rt, the commonly used one period log return is
  de-ned as
  Note that a log return is the logarithm (with the natural base) of a gross return and log Pt is called the log price. One immediate convenience in using log returns is that the additivity in multiperiod log returns, i.e. the k period log return rt(k) ′
  log(Pt=Pt?k) is the sum of the k one-period log returns:
  An investment at time t ? k with initial capital A yields at time t the capitalwhere 1r = (rt rt?1 ¢ ¢ ¢ rt?k 1)=k is the average one-period log returns. In this book returns refer to log returns unless speci-ed otherwise.
  Note that the identity (1.6) is in contrast with the approximation (1.4) which is only valid when the time unit is small. Indeed when the values are small, the two returns are approximately the same:
  However, rt < Rt. Figure 1.1 plots the log returns against the simple returns for the Apple Inc share prices in the period of January 1985 { February 2011. The returns are calculated based on the daily close prices for the three holding periods: a day, a week and a month. The -gure shows that the two de-nitions result almost the same daily returns, especially for those with the values between ?0.2 and 0.2. However when the holding period increases to a week or a month, the discrepancy between the two de-nitions is more apparent with a simple return always greater than the corresponding log return.
  ……

前言/序言


數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] 下載 mobi epub pdf txt 電子書

數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

兩位作者就不用多介紹瞭,都是很權威的,書也不錯!

評分

精裝書,沒有一本封皮是完好無損的

評分

精裝書,沒有一本封皮是完好無損的

評分

很喜歡,不錯!

評分

精裝書,沒有一本封皮是完好無損的

評分

應該不錯!

評分

書的內容還不錯,京東送貨快

評分

精裝書,沒有一本封皮是完好無損的

評分

好書

類似圖書 點擊查看全場最低價

數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


數學名著係列叢書:計量金融精要 [Mathematics Monograph Series:The Elements of Financial Econometrics] bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有