NLP汉语自然语言处理原理与实践+深度学习:卷积神经网络

NLP汉语自然语言处理原理与实践+深度学习:卷积神经网络 pdf epub mobi txt 电子书 下载 2025

想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 蓝墨水图书专营店
出版社: 电子工业出版社
ISBN:9787121307652
商品编码:11260632402
出版时间:2017-02-01
页数:1
字数:1

具体描述


NLP汉语自然语言处理原理与实践+深度学习:原理与应用实践 



深度学习:原理与应用实践


内容简介深度学习:原理与应用实践》全面、系统地介绍深度学习相关的技术,包括人工神经网络,卷积神经网络,深度学习平台及源代码分析,深度学习入门与进阶,深度学习高级实践,所有章节均附有源程序,所有实验读者均可重现,具有高度的可操作性和实用性。通过学习本书,研究人员、深度学习爱好者,能够在3 个月内,系统掌握深度学习相关的理论和技术。
目录

深度学习基础篇

第1 章 绪论 2

1.1 引言 2

1.1.1 Google 的深度学习成果 2

1.1.2 Microsoft 的深度学习成果 3

1.1.3 国内公司的深度学习成果 3

1.2 深度学习技术的发展历程 4

1.3 深度学习的应用领域 6

1.3.1 图像识别领域 6

1.3.2 语音识别领域 6

1.3.3 自然语言理解领域 7

1.4 如何开展深度学习的研究和应用开发 7

本章参考文献 11

第2 章 国内外深度学习技术研发现状及其产业化趋势 13

2.1 Google 在深度学习领域的研发现状 13

2.1.1 深度学习在Google 的应用 13

2.1.2 Google 的TensorFlow 深度学习平台 14

2.1.3 Google 的深度学习芯片TPU 15

2.2 Facebook 在深度学习领域的研发现状 15

2.2.1 Torchnet 15

2.2.2 DeepText 16

2.3 百度在深度学习领域的研发现状 17

2.3.1 光学字符识别 17

2.3.2 商品图像搜索 17

2.3.3 在线广告 18

2.3.4 以图搜图 18

2.3.5 语音识别 18

2.3.6 百度开源深度学习平台MXNet 及其改进的深度语音识别系统Warp-CTC 19

2.4 阿里巴巴在深度学习领域的研发现状 19

2.4.1 拍立淘 19

2.4.2 阿里小蜜――智能客服Messenger 20

2.5 京东在深度学习领域的研发现状 20

2.6 腾讯在深度学习领域的研发现状 21

2.7 科创型公司(基于深度学习的人脸识别系统) 22

2.8 深度学习的硬件支撑――NVIDIA GPU 23

本章参考文献 24

深度学习理论篇

第3 章 神经网络 30

3.1 神经元的概念 30

3.2 神经网络 31

3.2.1 后向传播算法 32

3.2.2 后向传播算法推导 33

3.3 神经网络算法示例 36

本章参考文献 38

第4 章 卷积神经网络 39

4.1 卷积神经网络特性 39

4.1.1 局部连接 40

4.1.2 权值共享 41

4.1.3 空间相关下采样 42

4.2 卷积神经网络操作 42

4.2.1 卷积操作 42

4.2.2 下采样操作 44

4.3 卷积神经网络示例:LeNet-5 45

本章参考文献 48

深度学习工具篇

第5 章 深度学习工具Caffe 50

5.1 Caffe 的安装 50

5.1.1 安装依赖包 51

5.1.2 CUDA 安装 51

5.1.3 MATLAB 和Python 安装 54

5.1.4 OpenCV 安装(可选) 59

5.1.5 Intel MKL 或者BLAS 安装 59

5.1.6 Caffe 编译和测试 59

5.1.7 Caffe 安装问题分析 62

5.2 Caffe 框架与源代码解析 63

5.2.1 数据层解析 63

5.2.2 网络层解析 74

5.2.3 网络结构解析 92

5.2.4 网络求解解析 104

本章参考文献 109

第6 章 深度学习工具Pylearn2 110

6.1 Pylearn2 的安装 110

6.1.1 相关依赖安装 110

6.1.2 安装Pylearn2 112

6.2 Pylearn2 的使用 112

本章参考文献 116

深度学习实践篇(入门与进阶)

第7 章 基于深度学习的手写数字识别 118

7.1 数据介绍 118

7.1.1 MNIST 数据集 118

7.1.2 提取MNIST 数据集图片 120

7.2 手写字体识别流程 121

7.2.1 模型介绍 121

7.2.2 操作流程 126

7.3 实验结果分析 127

本章参考文献 128

第8 章 基于深度学习的图像识别 129

8.1 数据来源 129

8.1.1 Cifar10 数据集介绍 129

8.1.2 Cifar10 数据集格式 129

8.2 Cifar10 识别流程 130

8.2.1 模型介绍 130

8.2.2 操作流程 136

8.3 实验结果分析 139

本章参考文献 140

第9 章 基于深度学习的物体图像识别 141

9.1 数据来源 141

9.1.1 Caltech101 数据集 141

9.1.2 Caltech101 数据集处理 142

9.2 物体图像识别流程 143

9.2.1 模型介绍 143

9.2.2 操作流程 144

9.3 实验结果分析 150

本章参考文献 151

第10 章 基于深度学习的人脸识别 152

10.1 数据来源 152

10.1.1 AT&T Facedatabase 数据库 152

10.1.2 数据库处理 152

10.2 人脸识别流程 154

10.2.1 模型介绍 154

10.2.2 操作流程 155

10.3 实验结果分析 159

本章参考文献 160

深度学习实践篇(高级应用)

第11 章 基于深度学习的人脸识别――DeepID 算法 162

11.1 问题定义与数据来源 162

11.2 算法原理 163

11.2.1 数据预处理 163

11.2.2 模型训练策略 164

11.2.3 算法验证和结果评估 164

11.3 人脸识别步骤 165

11.3.1 数据预处理 165

11.3.2 深度网络结构模型 168

11.3.3 提取深度特征与人脸验证 171

11.4 实验结果分析 174

11.4.1 实验数据 174

11.4.2 实验结果分析 175

本章参考文献 176

第12 章 基于深度学习的表情识别 177

12.1 表情数据 177

12.1.1 Cohn-Kanade(CK+)数据库 177

12.1.2 JAFFE 数据库 178

12.2 算法原理 179

12.3 表情识别步骤 180

12.3.1 数据预处理 180

12.3.2 深度神经网络结构模型 181

12.3.3 提取深度特征及分类 182

12.4 实验结果分析 184

12.4.1 实现细节 184

12.4.2 实验结果对比 185

本章参考文献 188

第13 章 基于深度学习的年龄估计 190

13.1 问题定义 190

13.2 年龄估计算法 190

13.2.1 数据预处理 190

13.2.2 提取深度特征 192

13.2.3 提取LBP 特征 196

13.2.4 训练回归模型 196

13.3 实验结果分析 199

本章参考文献 199

第14 章 基于深度学习的人脸关键点检测 200

14.1 问题定义和数据来源 200

14.2 基于深度学习的人脸关键点检测的步骤 201

14.2.1 数据预处理 201

14.2.2 训练深度学习网络模型 206

14.2.3 预测和处理关键点坐标 207

本章参考文献 212




NLP汉语自然语言处理原理与实践


内容简介

 本书是一本研究汉语自然语言处理方面的基础性、综合性书籍,涉及NLP的语言理论、算法和工程实践的方方面面,内容繁杂。 本书包括NLP的语言理论部分、算法部分、案例部分,涉及汉语的发展历史、传统的句法理论、认知语言学理论。需要指出的是,本书是迄今为止**本系统介绍认知语言学和算法设计相结合的中文NLP书籍,并从认知语言学的视角重新认识和分析了NLP的句法和语义相结合的数据结构。这也是本书的创新之处。 本书适用于所有想学习NLP的技术人员,包括各大人工智能实验室、软件学院等专业机构。

目录

第1章 中文语言的机器处理 1
1.1 历史回顾 2
1.1.1 从科幻到现实 2
1.1.2 早期的探索 3
1.1.3 规则派还是统计派 3
1.1.4 从机器学习到认知
计算 5
1.2 现代自然语言系统简介 6
1.2.1 NLP流程与开源框架 6
1.2.2 哈工大NLP平台及其
演示环境 9
1.2.3 Stanford NLP团队及其
演示环境 11
1.2.4 NLTK开发环境 13
1.3 整合中文分词模块 16
1.3.1 安装Ltp Python组件 17
1.3.2 使用Ltp 3.3进行中文
分词 18
1.3.3 使用结巴分词模块 20
1.4 整合词性标注模块 22
1.4.1 Ltp 3.3词性标注 23
1.4.2 安装StanfordNLP并
编写Python接口类 24
1.4.3 执行Stanford词性
标注 28
1.5 整合命名实体识别模块 29
1.5.1 Ltp 3.3命名实体识别 29
1.5.2 Stanford命名实体
识别 30
1.6 整合句法解析模块 32
1.6.1 Ltp 3.3句法依存树 33
1.6.2 Stanford Parser类 35
1.6.3 Stanford短语结构树 36
1.6.4 Stanford依存句法树 37
1.7 整合语义角色标注模块 38
1.8 结语 40
第2章 汉语语言学研究回顾 42
2.1 文字符号的起源 42
2.1.1 从记事谈起 43
2.1.2 古文字的形成 47
2.2 六书及其他 48
2.2.1 象形 48
2.2.2 指事 50
2.2.3 会意 51
2.2.4 形声 53
2.2.5 转注 54
2.2.6 假借 55
2.3 字形的流变 56
2.3.1 笔与墨的形成与变革 56
2.3.2 隶变的方式 58
2.3.3 汉字的符号化与结构 61
2.4 汉语的发展 67
2.4.1 完整语义的基本
形式――句子 68
2.4.2 语言的初始形态与
文言文 71
2.4.3 白话文与复音词 73
2.4.4 白话文与句法研究 78
2.5 三个平面中的语义研究 80
2.5.1 词汇与本体论 81
2.5.2 格语法及其框架 84
2.6 结语 86
第3章 词汇与分词技术 88
3.1 中文分词 89
3.1.1 什么是词与分词规范 90
3.1.2 两种分词标准 93
3.1.3 歧义、机械分词、语言
模型 94
3.1.4 词汇的构成与未登录
词 97
3.2 系统总体流程与词典结构 98
3.2.1 概述 98
3.2.2 中文分词流程 99
3.2.3 分词词典结构 103
3.2.4 命名实体的词典
结构 105
3.2.5 词典的存储结构 108
3.3 算法部分源码解析 111
3.3.1 系统配置 112
3.3.2 Main方法与例句 113
3.3.3 句子切分 113
3.3.4 分词流程 117
3.3.5 一元词网 118
3.3.6 二元词图 125
3.3.7 NShort算法原理 130
3.3.8 后处理规则集 136
3.3.9 命名实体识别 137
3.3.10 细分阶段与·短
路径 140
3.4 结语 142
第4章 NLP中的概率图模型 143
4.1 概率论回顾 143
4.1.1 多元概率论的几个
基本概念 144
4.1.2 贝叶斯与朴素贝叶斯
算法 146
4.1.3 文本分类 148
4.1.4 文本分类的实现 151
4.2 信息熵 154
4.2.1 信息量与信息熵 154
4.2.2 互信息、联合熵、
条件熵 156
4.2.3 交叉熵和KL散度 158
4.2.4 信息熵的NLP的
意义 159
4.3 NLP与概率图模型 160
4.3.1 概率图模型的几个

................



用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou 等,本站所有链接都为正版商品购买链接。

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有