从装帧设计到内页的排版,这本书都透露着一股匠心。纸张的质感拿在手里非常舒服,字体大小和行距的处理也充分考虑了长时间阅读的需求,长时间阅读下来眼睛也不会感到疲劳,这对于一本需要投入较多精力的科普书来说,非常重要。封面设计简洁而不失内涵,初次拿到书时,就有一种“这不是一本普通的科普读物”的预感。这种对产品整体品质的把控,显示了出版方和作者对读者的尊重。它不仅仅是一本传递知识的书,更像是一件精美的艺术品,值得收藏,也值得反复品味,每一次翻阅都能从中汲取到新的感悟和力量。
评分这套书真是让我眼前一亮,尤其是那种扑面而来的知识的魅力,感觉作者完全没有把我们当成是需要被“喂养”知识的初学者,而是真诚地邀请我们一起探索科学世界的奇妙。书中的很多概念,以前觉得遥不可及,现在读起来却感觉像是在和一位老朋友聊天,轻松自然,一点也不枯燥。我特别喜欢它那种深入浅出的叙事方式,把复杂的理论用日常的例子解释得清清楚楚,让我这个理工科背景不那么扎实的读者也能很快抓住重点。而且,阅读的过程本身就是一种享受,文字排版和插图的配合恰到好处,让人在享受阅读的同时,大脑也在不停地运转,思考着那些隐藏在现象背后的原理。读完之后,那种豁然开朗的感觉,真是太棒了,感觉自己对周围世界的理解都提升了一个档次。
评分这本书最打动我的地方在于它所传递出的那种对未知世界永不满足的好奇心。作者的笔触中充满了热情,仿佛他自己也在重温发现的喜悦。他没有用那种高高在上的学者口吻来俯视读者,而是用一种平等的、充满激情的姿态,邀请我们一同踏上这段认知之旅。读到某些关键的转折点时,我甚至能感受到作者当初在发现这个真理时的那种兴奋和激动,仿佛那一刻我们是并肩站在一起的。这种情感的共鸣,比单纯的知识灌输要有效得多,它真正点燃了我内心深处对科学探索的渴望,让我开始以一种全新的眼光去看待身边的一切事物。
评分我是一个对细节特别较真的人,看书的时候总会留意作者的逻辑链条是否完整,是否有跳跃。这本书在这方面做得无可挑剔。它构建了一个非常完整的知识体系,从最基础的概念开始,层层递进,每一步都有明确的支撑和严谨的推导。我特别欣赏作者的叙事节奏感,不会让人觉得拖沓,也不会因为信息量过大而感到窒息。它更像是一部精心编排的交响乐,高潮迭起,过渡自然,每一个音符(知识点)都在最恰当的时机出现,共同奏响一曲关于探索与发现的赞歌。这种结构上的完美和逻辑上的无懈可击,让我在阅读时能完全信任作者的引导,放心地跟随他进入科学的迷宫。
评分说实话,我很少看到有哪本书能把“趣味”和“严谨”结合得这么完美。很多科普读物为了追求趣味性,往往会牺牲掉科学的深度和准确性,但这本书完全没有这个问题。它在让你开怀大笑或者惊叹连连的同时,潜移默化地把那些硬核的科学知识植入你的脑海里。我印象最深的是它对某个经典物理学悖论的解析,那种抽丝剥茧的论证过程,严密得让人无法反驳,但同时,作者又用了非常生动的比喻,让这个原本晦涩难懂的概念变得通俗易懂。这种高超的写作技巧,真的不是一般人能做到的,需要深厚的学识和极强的表达能力,读起来简直是一种享受,让人忍不住想一口气读完,然后立刻去和别人分享这份震撼。
评分研究内蕴几何的学科首属黎曼几何·黎曼在一次著名的演讲中,创立了这门奠基性的理论。它首次强调了内蕴的思想, 并将所有此前的几何学对象都归纳到更一般的范畴里,内蕴地定义了诸如度量等等的几何概念。 这门几何理论打开了近代几何学的大门,具有里程碑的意义。它也成为了爱因斯坦的广义相对论的数学基础。
评分[俄]别莱利曼著王艳译写的的书都写得很好,[]还是朋友推荐我看的,后来就非非常喜欢,他的书了。除了他的书,我和我家小孩还喜欢看郑渊洁、杨红樱、黄晓阳、小桥老树、王永杰、杨其铎、晓玲叮当、方洲,他们的书我觉得都写得很好。大师经典系列·别莱利曼的趣味科学七天玩转趣味几何,很值得看,价格也非常便宜,比实体店买便宜好多还省车费。书的内容直得一读,阅读了一下,写得很好,大师经典系列·别莱利曼的趣味科学七天玩转趣味几何不仅是为爱好数学的人而写的,也是为那些还没有发现数学上许多引人入胜的东西的读者写的。许多读者曾在学校里学过几何学,但并不习惯去注意在我们周围世界里各种事物常见的几何关系,不会把学到的几何学知识应用到实际方面去,不知道在生活中间遇到困难的时候、在郊游或露营的时候应用学到的几何学知识。大师经典系列·别莱利曼的趣味科学七天玩转趣味几何作者把几何学从学校教室的围墙里、从科学的围城中,引到户外去,到树林里、到原野上、到河边、到路上,在那里摆脱教科书和函数表,无拘无束地活学活用几何,用几何知识重新认识美丽的世界。,内容也很丰富。,一本书多读几次,用阴影长度测量高度现在我还经常想起小时候一件令我惊奇的事情一位守林人用一个很小的仪器测量一棵大树的高度。他站在一个大树附近,用一个四方形的木板对大树瞄了几下,这时我还以为他马上要上树测量树高了呢,谁知他竟然什么都没有做,只是把那个方形的小仪器放入了口袋,并告诉大家已经测量完毕。可是这在我眼中好像才刚刚开始那时我简直视这为神奇的魔术,不用爬到树顶测量,也不用把大树砍倒,就能很轻松地测量出大树的高度,对于很小的我来说这简直就是奇迹。随着我慢慢地长大,懂得的知识越来越多,我才明白这竟然是非常简单的方法,而且像这样的利用简单的仪器,甚至不用任何工具都可以完成的测量有好多种方法。古希腊的哲学家泰勒就曾在公元前6世纪使用一种最容易、最古老的方法测量出了金字塔的高度。他利用的就是太阳下的金字塔的阴影。当时法老和祭司们都不怎么相信这个来自北方的客人能测量出胡夫金字塔的高度。传说,泰勒选择的时间是自己的影子和自己的身高一样的时刻,这个时候只要知道金字塔阴影的长度就等于知道了金字塔的高度了。泰勒巧妙地利用了等腰直角三角形的相似原理。把这位古希腊哲学家看问题的方法拿到今天,恐怕我们今天的小学生都会感觉很简单。但是我们不要忘记我们现在所学到的几何知识都是从那个时代以后建立起来的,我们是踩在前辈的肩膀上看问题的。希腊的数学家欧几里得在公元前300年就写了一部很好的书,直到现在已经两千多年过去了,我们仍然在使用这本书教育下一代。现在的中学生虽然都知道这本书中
评分结果,当晚便在厨房捕获一枚,中小等身架!当我拉出粘鼠板时,它还没死,还在垂死挣扎,那个滴溜溜的眼神似乎还在乞求什么。迟啦,一切都太迟啦,第一鼠,好走啊!下辈子别托生做鼠啊,生就一副贪婪的嘴脸真的没啥好下场的!
评分平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。
评分总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何”。非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。
评分最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。
评分朋友说,孩子喜欢,是正品
评分从代数的角度看, 几何学从传统的解析几何发展成了更一般的一门理论--代数几何。传统代数几何就是研究多项式方程组的零点集合作为几何物体所具有的几何结构和性质--这种几何体叫做代数簇。解析几何所研究的直线、圆锥曲线、球面、锥面等等都是其中的特例。稍微推广一些,就是代数曲线,特别是平面代数曲线, 它相应于黎曼曲面。代数几何可以用交换代数的环和模的语言来描述,也可以从复几何、霍奇理论等分析的方法去探讨。代数几何的思想也被引入到数论中, 从而促使了抽象代数几何的发展,比如算术代数几何。
评分书不错,有点意思,值得一看
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等,本站所有链接都为正版商品购买链接。
© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有