非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] pdf epub mobi txt 电子书 下载 2024

图书介绍


非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras]

简体网页||繁体网页
[瑞典] 伊布拉基莫夫(Ibragimov N.H.) 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-22

类似图书 点击查看全场最低价

出版社: 高等教育出版社
ISBN:9787040367416
版次:1
商品编码:11209037
包装:精装
丛书名: 非线性物理科学
外文名称:Nonlinear Physical Science: Transformation Groups and Lie Algebras
开本:16开
出版时间:2013-02-01
用纸:胶版纸##

非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  《非线性物理科学:变换群和李代数(英文版)》为作者在俄罗斯、美国、南非和瑞典多年讲述变换群和李群分析课程的讲义。书中所讨论的局部李群方法提供了求解非线性微分方程解析解通用且非常有效的方法,而近似变换群可以提高构造含少量参数的微分方程的技巧。《非线性物理科学:变换群和李代数(英文版)》通俗易懂、叙述清晰,并提供丰富的模型,能帮助读者轻松地逐步深入各种主题。

作者简介

  伊布拉基莫夫(Ibragimov,N.H.),教授,瑞士科学家,被公认为是在微分方程对称分析方面世界上最具权威的专家之一。他发起并构建了现代群分析理论,并推动了该理论在多方面的应用。

内页插图

目录

Preface
Part Ⅰ Local Transformation Groups
1 Preliminaries
1.1 Changes of frames of reference and point transformations
1.1.1 Translations
1.1.2 Rotations
1.1.3 Galilean transformation
1.2 Introduction of transformation groups
1.2.1 Definitions and examples
1.2.2 Different types of groups
1.3 Some useful groups
1.3.1 Finite continuous groups on the straight line
1.3.2 Groups on the plane
1.3.3 Groups in IRn
Exercises to Chapter 1
2 One-parameter groups and their invariants
2.1 Local groups of transformations
2.1.1 Notation and definition
2.1.2 Groups written in a canonical parameter
2.1.3 Infinitesimal transformations and generators
2.1.4 Lie equations
2.1.5 Exponential map
2.1.6 Determination of a canonical parameter
2.2 Invariants
2.2.1 Definition and infinitesimal test
2.2.2 Canonical variables
2.2.3 Construction of groups using canonical variables
2.2.4 Frequently used groups in the plane
2.3 Invariant equations
2.3.1 Definition and infinitesimal test
2.3.2 Invariant representation ofinvariant manifolds
2.3.3 Proof of Theorem
2.3.4 Examples on Theorem
Exercises to Chapter 2
3 Groups adnutted by differential equations
3.1 Preliminaries
3.1.1 Differential variables and functions
3.1.2 Point transformations
3.1.3 Frame of differential equations
3.2 Ptolongation of group transformations
3.2.1 0ne-dimensional case
3.2.2 Prolongation with several differential variables
3.2.3 General case
3.3 Prolongation of group generators
3.3.1 0ne-dimensional case
3.3.2 Several differential variables
3.3.3 General case
3.4 First definition of symmetry groups
3.4.1 Definition
3.4.2 Examples
3.5 Second definition of symmetry groups
3.5.1 Definition and determining equations
3.5.2 Determining equation for second-order ODEs
3.5.3 Examples on solution of determining equations
Exercises to Chapter 3
4 Lie algebras of operators
4.1 Basic definitions
4.1.2 Properties of the commutator
4.1.3 Properties of determining equations
4.2 Basic properties
4.2.1 Notation
4.2.2 Subalgebra and ideal
4.2.3 Derived algebras
4.2.4 Solvable Lie algebras
4.3 Isomorphism and similarity
4.3.1 Isomorphic Lie akebras
4.3.2 Similar Lie algebras
4.4 Low-dimensionalLie algebras
4.4.1 0ne-dimensional algebras
4.4.2 Two-dimensional algebras in the plane
4.4.3 Three-dimensional algebras in the plane
4.4.4 Three-dimensional algebras in lR3
4.5 Lie algebras and multi-parameter groups
4.5.1 Definition of multi-parameter groups
4.5.2 Construction of multi-parameter groups
5 Galois groups via symmetries
5.1 Preliminaries
5.2 Symmetries of algebraic equations
5.2.1 Determining equation
5.2.2 First example
5.2.3 Second example
5.2.4 Third example
5.3 Construction of Galois groups
5.3.1 First example
5.3.2 Second example
5.3.3 Third example
5.3.4 Concluding remarks
Assignment to Part I

Part II Approximate Transformation Groups
6.1 Motivation
6.2 A sketch on Lie transformation groups
6.2.1 0ne-parameter transformation groups
6.2.2 Canonical parameter
6.2.3 Group generator and Lie equations
6.3 Approximate Cauchy problem
6.3.1 Notation
6.3.2 Definition of the approximate Cauchy problem
7 Approximate transformations
7.1 Approximate transformations defined
7.2 Approximate one-parameter groups
7.2.1 Introductory remark
7.2.2 Definition ofone-parameter approximate
7.2.3 Generator of approximate transformation group
7.3 Infinitesimal description
7.3.1 Approximate Lie equations
7.3.2 Approximate exponential map
Exercises to Chapter 7
8 Approximate symmetries
8.1 Definition of approximate symmetries
8.2 Calculation of approximate symmetries
8.2.1 Determining equations
8.2.2 Stable symmetries
8.2.3 Algorithm for calculation
8.3.2 Approximate commutator and Lie algebras
9.1 Integration of equations with a smallparameter usingapproximate symmetries
9.1.1 Equation having no exact point symmetries
9.1.2 Utilization of stable symmetries
9.2 Approximately invariant solutions
9.2.1 Nonlinear wave equation
9.2.2 Approximate travelling waves of KdV equation
9.3 Approximate conservation laws
Exercises to Chapter 9
Assignment to Part II
Bibliography
Index
非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] 电子书 下载 mobi epub pdf txt

非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


非线性物理科学:变换群和李代数(英文版) [Nonlinear Physical Science: Transformation Groups and Lie Algebras] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有