數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版) [Data Mining Techniques: For Marketing,Sales,and Customer Relationship pdf epub mobi txt 電子書 下載
內容簡介
誰將是忠實的客?誰將不是呢?哪些消息對哪些客戶細分最有效?如何較大化客戶的價值?如何將客戶的價值最火化?《數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版)》提供瞭強大的工具,可以從上述和其他重要商業問題所在的公司數據庫中提取它們的答案。自本書第1版問世以來,數據挖掘已經日益成為現代商業不可缺少的工具。在這個較新版本中,作者對每個章節都進行瞭大量的更新和修訂,並且添加瞭幾個新的章節。《數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版)》保留瞭早期版本的重點,指導市場分析師、業務經理和數據挖掘專傢利用數據挖掘方法和技術米解決重要的商業問題。在不犧牲準確度的前提下,為瞭簡單起見,即使是復雜的主題,作者也進行瞭簡潔明瞭的介紹,並盡量減少對技術術語或數學公式的使用。每個技術豐題都通過案例研究和源自作者經驗的真實案例進行說明,每章都包含瞭針對從業者的寶貴提示。書中介紹的新技術和更為深入的技術包括:綫性和邏輯迴歸模型、增量響應(提升)建模、樸素貝葉斯模型、錶查詢模型、相似度模型、徑嚮基函數網絡、期望值較大化(EM)聚類和群體智慧。新的章節專門討論瞭數據準備、派生變量、主成分分析和其他變量減少技術,以及文本挖掘。
在建立瞭全麵的數據挖掘應用業務環境,並介紹瞭所有數據挖掘項目通用的數據挖掘方法論的各個方麵之後,《數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版)》詳細介紹瞭每個重要的數據挖掘技術。
作者簡介
Gordon S.Linoff和Michael J.A.Berry在數據挖掘領域的知名度眾所周知。他們是Data Miners公司——一傢從事數據挖掘的谘詢公司——的創始人,而且他們已經共同撰寫瞭一些在該領域有影響力和得到廣泛閱讀的書籍。他們共同撰寫的第1本書是Data Mining Techniques的第1個版本,於1997年齣版。自那時起,他們就一直積極地挖掘各種行業的數據。持續的實踐分析工作使得兩位作者能夠緊跟數據挖掘、預測以及預測分析領域的快速發展。Gordon和Michael嚴格地獨立於供應商。通過其谘詢工作,作者接觸瞭所有主要軟件供應商(以及一些小的供應商)的數據分析軟件。他們相信好的結果不在於是采用專用的還是開源的軟件,命令行的還是點擊的軟件,而是在於創新思維和健全的方法。
Gordon和Michael專注於數據挖掘在營銷和客戶關係管理方麵的應用——例如,為交叉銷售和嚮上銷售改進推薦,預測未來的用戶級彆,建模客戶生存期價值,根據用戶行為對客戶進行劃分,為訪問網站的客戶選擇很好登錄頁麵,確定適閤列入營銷活動的候選者,以及預測哪些客戶處於停止使用軟件包、服務或藥物治療的風險中。Gordon和Michael緻力於分享他們的知識、技能以及對這個主題的熱情。當他們自己不挖掘數據時,他們非常喜歡通過課程、講座、文章、現場課堂,當然還有你要讀的這本書來教其他人。經常可以發現他們在會議上發言和在課堂上授課。作者還在blog.data-miners.com維護瞭一個數據挖掘的博客。
Gordon生活在曼哈頓。在本書之前,他最近的一本書是Data Analysis Using SQL and Excel,已經由Wiley於2008年齣版。
Michael生活在馬薩諸塞州劍橋市。他除瞭在Data Miners從事谘詢工作之外,還在波 士頓大學卡羅爾管理學院講授市場營銷分析(Marketing Analytics)課程。
內頁插圖
目錄
第1章 什麼是數據挖掘以及為什麼要進行數據挖掘
1.1 什麼是數據挖掘
1.1.1 數據挖掘是一項業務流程
1.1.2 大量的數據
1.1.3 有意義的模式和規則
1.1.4 數據挖掘和客戶關係管理
1.2 為什麼是現在
1.2.1 數據正在産生
1.2.2 數據正存在於數據倉庫中
1.2.3 計算能力能夠承受
1.2.4 對客戶關係管理的興趣非常強烈
1.2.5 商業的數據挖掘軟件産品變得可用
1.3 數據挖掘人員的技能
1.4 數據挖掘的良性循環
1.5 業務數據挖掘的案例研究
1.5.1 識彆美國銀行的業務挑戰
1.5.2 應用數據挖掘
1.5.3 對結果采取行動
1.5.4 度量數據挖掘的影響
1.6 良性循環的步驟
1.6.1 識彆業務機會
1.6.2 將數據轉換為信息
1.6.3 根據信息采取行動
1.6.4 度量結果
1.7 良性循環上下文中的數據挖掘
1.8 經驗教訓
第2章 數據挖掘在營銷和客戶關係管理中的應用
2.1 兩個客戶生存周期
2.1.1 客戶個人生存周期
2.1.2 客戶關係生存周期
2.1.3 基於訂閱的關係和基於事件的關係
2.2 圍繞客戶生存周期組織業務流程
2.2.1 客戶獲取
2.2.2 客戶激活
2.2.3 客戶關係管理
2.2.4 贏迴
2.3 數據挖掘應用於客戶獲取
2.3.1 識彆好的潛在客戶
2.3.2 選擇通信渠道
2.3.3 挑選適當的信息
2.4 數據挖掘示例:選擇閤適的地方做廣告
2.4.1 誰符閤剖析
2.4.2 度量讀者群的適應度
2.5 數據挖掘改進直接營銷活動
2.5.1 響應建模
2.5.2 優化固定預算的響應
2.5.3 優化活動收益率
2.5.4 抵達最受信息影響的人
2.6 通過當前客戶瞭解潛在客戶
2.6.1 在客戶成為“客戶”以前開始跟蹤他們
2.6.2 收集新的客戶信息
2.6.3 獲取時間變量可以預測將來的結果
2.7 數據挖掘應用於客戶關係管理
2.7.1 匹配客戶的活動
2.7.2 減少信用風險
2.7.3 確定客戶價值
2.7.4 交叉銷售、追加銷售和推薦
2.8 保留
2.8.1 識彆流失
2.8.2 為什麼流失是問題
2.8.3 不同類型的流失
2.8.4 不同種類的流失模型
2.9 超越客戶生存周期
2.10 經驗教訓
第3章 數據挖掘過程
3.1 會齣什麼問題
3.1.1 學習的東西不真實
3.1.2 學習的東西真實但是無用
3.2 數據挖掘類型
3.2.1 假設檢驗
3.2.2 有指導數據挖掘
3.2.3 無指導數據挖掘
3.3 目標、任務和技術
3.3.1 數據挖掘業務目標
3.3.2 數據挖掘任務
3.3.3 數據挖掘技術
3.4 製定數據挖掘問題:從目標到任務再到技術
3.4.1 選擇廣告的最佳位置
3.4.2 確定嚮客戶提供的最佳産品
3.4.3 發現分支或商店的最佳位置
3.4.4 根據未來利潤劃分客戶
3.4.5 減少暴露於違約的風險
3.4.6 提高客戶保留
3.4.7 檢測欺詐性索賠
3.5 不同技術對應的任務
3.5.1 有一個或多個目標
3.5.2 目標數據是什麼
3.5.3 輸入數據是什麼
3.5.4 易於使用的重要性
3.5.5 模型可解釋性的重要性
3.6 經驗教訓
第4章 統計學入門:關於數據,你該瞭解些什麼
4.1 奧卡姆(Occam)剃刀
4.1.1 懷疑論和辛普森悖論
4.1.2 零假設(Null Hypothesis)
4.1.3 p-值
4.2 觀察和度量數據
4.2.1 類彆值
4.2.2 數值變量
4.2.3 更多的統計思想
4.3 度量響應
4.3.1 比例標準誤差
4.3.2 使用置信區間比較結果
4.3.3 利用比例差異比較結果
4.3.4 樣本大小
4.3.5 置信區間的真正含義是什麼
4.3.6 實驗中檢驗和對照的大小
4.4 多重比較
4.4.1 多重比較的置信水平
4.4.2 Bonferroni修正
4.5 卡方檢驗
4.5.1 期望值
4.5.2 卡方值
4.5.3 卡方值與比例差異的比較
4.6 示例:區域和開局卡方
4.7 案例研究:利用A/B檢驗比較兩種推薦係統
4.7.1 第一個指標:參與會話
4.7.2 第二個指標:每個會話的日收益
4.7.3 第三個指標:每天誰取勝
4.7.4 第四個指標:每個會話的平均收益
……
第5章 描述和預測:剖析與預測建模
第6章 使用經典統計技術的數據挖掘
第7章 決策樹
第8章 人工神經網絡
第9章 最近鄰方法:基於記憶的推理和協同過濾
第10章 瞭解何時應擔憂:使用生存分析瞭解客戶
第11章 遺傳算法與群體智能
第13章 發現相似的島嶼:自動群集檢測
第14章 其他的群集檢測方法
第15章 購物籃分析和關聯規則
第16章 鏈接分析
第17章 數據倉庫、OLAP、分析沙箱和數據挖掘
第18章 構建客戶簽名
第19章 派生變量:使數據的含義更豐富
第20章 減少變量數量的技術
第21章 仔細聆聽客戶所述:文本挖掘
精彩書摘
1.每個業務都是服務業務
處於服務行業的公司,信息將賦予其競爭優勢。這就是為什麼連鎖飯店會記錄你首選無煙的房間,而租車公司會記錄你喜歡的車的類型。此外,傳統上認為自身不是服務提供者的公司也開始從不同的角度來思考。汽車經銷商是齣售汽車還是運輸工具?如果是後者,那麼每當你自己的車在商店裏時,經銷商就為你提供一輛替代車是閤理的,許多經銷商現在就是這麼做的。
即使是日用商品也可以通過服務得到加強。一傢傢庭供熱石油公司如果能夠監視你的使用情況,並在你需要更多的石油時嚮你提供石油,那麼相比一傢公司期望你在油箱枯竭和管道凍結前記得打電話來安排你的訂單,它銷售的産品更好。對於信用卡公司、長途運輸公司、航空公司以及所有類型的零售商而言,服務競爭通常會與價格競爭一樣多或更多。
2.信息即産品
許多公司發現他們擁有的客戶信息不僅對自己有價值,而且對其他人同樣有價值。一傢具有忠誠卡方案的超市有一些消費者包裝食品行業會喜歡的信息——關於誰在購買哪些産品的知識。信用卡公司有一些航空公司想要瞭解的信息——誰在買大量的機票。超市和信用卡公司都處於知識經紀人的位置。超市可以通過打印優惠券嚮消費者包裝食品公司索取更高的收費,此時超市會承諾通過嚮適當的購物者打印適當的優惠券獲得更高的迴報率。信用卡公司可以嚮航空公司收費,其目標是為經常旅行、但乘坐其他航空公司航班的人提供頻繁的飛行積分。
Google瞭解人們正在Web上尋找什麼。它在齣售贊助商鏈接(以及其他事物)時利用這種知識。保險公司會為確保某人在搜索“汽車保險”時,為其提供它們站點的鏈接而支付相應的費用。金融企業將支付贊助商鏈接,從而當有人搜索諸如“抵押貸款再融資”之類的短語時顯示其鏈接。
……
前言/序言
15年前,Michael和我閤寫瞭這本書的第一版。那本書400頁多一點,通過彌閤技術和實踐之間的差距,通過幫助商業人士瞭解數據挖掘技術以及幫助技術人員理解這些技術的商業應用,從而滿足瞭我們調查數據挖掘領域的目標。當Wiley齣版社的編輯Bob Elliott讓我們撰寫Data Mining Techniques的第3版時,我們欣然同意,渾然忘記瞭撰寫一本書給我們的個人生ai ok de活所帶來的犧牲。我們也知道新版本將會大幅改寫以前的兩個版本。
在過去的15年中,這個領域無論是在內涵上還是在字麵上都已經得到瞭擴展,這本書中同樣如此。2004年齣版瞭第2版,這一版本增加到瞭600頁,並引入瞭兩個新的章節,分彆介紹瞭生存分析和統計算法這兩種新的關鍵技術,它們對於數據挖掘人員而言已經變得(並依然)越來越重要。現在的這個版本將再度引入新的技術領域——尤其是文本挖掘和主成分分析,同時在所有章節中引入瞭豐富的新實例,並增強瞭技術描述。這些例子來自各行各業,其中包括金融服務、零售、電信、媒體、保險、保健和基於Web的服務。
作為該領域的從業人員,我們也一直在學習。我們現在大約已經有半個世紀的數據挖掘方麵的經驗。自1999年以來,Michael和我一直在通過SAS研究所的業務知識係列(本係列與業務的軟件方麵分離,引入外部專傢講授非軟件特定的課程)、數據倉庫研究所以及許多不同企業的現場課程進行授課。我們在這些課程中的講師角色使我們有機會接觸成韆上萬各種行業中的不同業務人員。其中商業數據挖掘技術這門課程就是基於這本書的第二版。這些課程提供瞭大量有關數據挖掘主題的反饋,比如現實世界的人們正在做什麼,以及如何以最佳方式來錶示這些思想,從而使它們易於理解。大部分的反饋在這個新版本中都右所反映。我們從學生那裏學到的東西看起來與學生從我們這裏學到的一樣多。
數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版) [Data Mining Techniques: For Marketing,Sales,and Customer Relationship 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
很好很好很好很好很好
評分
☆☆☆☆☆
好厚啊 。。。。哈哈哈
評分
☆☆☆☆☆
同事要買的....網上找瞭很久,都斷貨瞭。。。
評分
☆☆☆☆☆
評分
☆☆☆☆☆
數據分析的基礎和實際運用都能很好的舉例說明,很不錯的書
評分
☆☆☆☆☆
◆用於處理參差不齊的可變深度層次和多值屬性的橋接錶
評分
☆☆☆☆☆
東西不錯,物流很快,給予好評
評分
☆☆☆☆☆
書已收到,數據分析全靠它們瞭,什麼都好,就是開不到增票
評分
☆☆☆☆☆
中國圖書行業經營效益較為穩定,毛利率維持在15%-16%之間,銷售利潤率維持在12%-14%之間。但與其他行業相比,行業投資迴報率並不太理想,行業總資産報酬率低於6%,淨資産利潤率低於8%;所幸兩項指標都呈波動上升趨勢。
數據挖掘技術:應用於市場營銷、銷售與客戶關係管理(第3版) [Data Mining Techniques: For Marketing,Sales,and Customer Relationship pdf epub mobi txt 電子書 下載