加性數論:逆問題與和集幾何 [Additive Number Theory:Inverse Problems and the Geometry of Sumsets] pdf epub mobi txt 電子書 下載
內容簡介
《加性數論:逆問題與和集幾何》分為上下2捲。堆壘數論討論的是很經典的直接問題。在這個問題中,首先假定有一個自然數集閤a和大於等於2的整數h,定義的和集ha是由所有的h和a中元素乘積的和組成,試圖描述和集ha的結構;相反地,在逆問題中,從和集ha開始,去尋找這樣的一個集閤a。近年來,有關整數有限集的逆問題方麵取得瞭顯著進展。特彆地,freiman, kneser, plünnecke, vosper以及一些其他的學者在這方麵做齣瞭突齣的貢獻。《加性數論:逆問題與和集幾何》中包括瞭這些結果,並且用freiman定理的ruzsa證明將《加性數論:逆問題與和集幾何》的內容推嚮瞭高潮。
《加性數論:逆問題與和集幾何》讀者對象:數學專業的研究生和相關專業的科研人員。
內頁插圖
目錄
preface
notation
1 simple inverse theorems
1.1 direct and inverse problems
1.2 finite arithmetic progressions
1.3 an inverse problem for distinct summands
1.4 a special case
1.5 small sumsets: the case 2a 3k - 4
1.6 application: the number of sums and products
1.7 application: sumsets and powers of 2
1.8 notes
1.9 exercises
2 sums of congruence classes
2.1 addition in groups
2.2 the e-transform
2.3 the cauchy-davenport theorem
2.4 the erdos——ginzburg-ziv theorem
2.5 vosper's theorem
2.6 application: the range of a diagonal form
2.7 exponential sums
2.8 the freiman-vosper theorem
2.9 notes
2.10 exercises
3 sums of distinct congruence classes
3.1 the erd6s-heilbronn conjecture
3.2 vandermonde determinants
3.3 multidimensional ballot numbers
3.4 a review of linear algebra
3.5 alternating products
3.6 erdos-heilbronn, concluded
3.7 the polynomial method
3.8 erd6s-heilbronn via polynomials
3.9 notes
3.10 exercises
4 kneser's theorem for groups
4.1 periodic subsets
4.2 the addition theorem
4.3 application: the sum of two sets of integers
4.4 application: bases for finite and a-finite groups
4.5 notes
4.6 exercises
5 sums of vectors in euclidean space
5.1 small sumsets and hyperplanes
5.2 linearly independent hyperplanes
5.3 blocks
5.4 proof of the theorem
5.5 notes
5.6 exercises
6 geometry of numbers
6.1 lattices and determinants
6.2 convex bodies and minkowski's first theorem
6.3 application: sums of four squares
6.4 successive minima and minkowski's second theorem
6.5 bases for sublattices
6.6 torsion-free abelian groups
6.7 an important example
6.8 notes
6.9 exercises
7. plunnecke's inequality
7.1 plunnecke graphs
7.2 examples of plunnecke graphs
7.3 multiplicativity of magnification ratios
7.4 menger's theorem
7.5 pliinnecke's inequality
7.6 application: estimates for sumsets in groups
7.7 application: essential components
7.8 notes
7.9 exercises
8 freiman's theorem
8.1 multidimensional arithmetic progressions
8.2 freiman isomorphisms
8.3 bogolyubov's method
8.4 ruzsa's proof, concluded
8.5 notes
8.6 exercises
9 applications of freiman's theorem
9.1 combinatorial number'theory
9.2 small sumsets and long progressions
9.3 the regularity lemma
9.4 the balog-szemeredi theorem
9.5 a conjecture of erd6s
9.6 the proper conjecture
9.7 notes
9.8 exercises
references
index
前言/序言
加性數論:逆問題與和集幾何 [Additive Number Theory:Inverse Problems and the Geometry of Sumsets] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
還沒仔細讀
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
還沒仔細讀
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
評分
☆☆☆☆☆
這是第二冊。GTM164是第一冊。本書文筆優美,論證清晰,可以視為數論的經典。我覺得這書的名氣遠沒有應該得到的大,本書應該成為每一個數論工作組的案頭必備
加性數論:逆問題與和集幾何 [Additive Number Theory:Inverse Problems and the Geometry of Sumsets] pdf epub mobi txt 電子書 下載