基本信息
R语言实战 第2版
作 者:(美)卡巴科弗(Robert I.Kabacoff) 著;王小宁 等 译定 价:99出 版 社:人民邮电出版社出版日期:2016-05-01页 数:534装 帧:平装ISBN:9787115420572主编推荐
大数据时代已经到来,在商业、经济及其他领域中基于数据和分析去发现问题并作出科学、客观的决策越来越重要。开源软件R是世界上*流行的数据分析、统计计算及制图语言,几乎能够完成任何数据处理任务,可安装并运行于所有主流平台,为我们提供了成千上万的专业模块和实用工具,是从大数据中获取有用信息的绝JIA工具,是数据挖掘、数据分析人才的推荐技能。
本书从解决实际问题入手,尽量跳脱统计学的理论阐述来讨论R语言及其应用,讲解清晰透澈,极具实用性。作者不仅高度概括了R语言的强大功能,展示了各种实用的统计示例,而且对于难以用传统方法分析的凌乱、不完整和非正态的数据也给出了完备的处理方法。第2版新增6章内容,涵盖时间序列、聚类分析、分类、高级编程、创建包和创建动态报告等,并分别详细介绍了如何使用ggplot2和lattice进行高级绘图。通读本书,你将全面掌握使用R语言进行数据分析、数据挖掘的技巧,领略大量探索和展示数据的图形功能,并学会如何撰写动态报告,从而更加高效地进行分析与沟通。
想要成为备受高科技企业追捧的数据分析师吗?想要科学分析数据并正确决策吗?不妨从本书开始,挑战大数据,用R开始炫酷地统计与分析数据吧!
内容简介
本书注重实用性,是一本全面而细致的R指南,高度概括了该软件和它的强大功能,展示了使用的统计示例,且对于难以用传统方法处理的凌乱、不完整和非正态的数据给出了优雅的处理方法。作者不仅仅探讨统计分析,还阐述了大量探索和展示数据的图形功能。新版做了大量更新和修正,新增了近200页内容,介绍数据挖掘、预测性分析和高级编程。
本书适合数据分析人员及R用户学习参考。
作者简介
Robert I. Kabacoff
R语言社区学习网站Quick-R的维护者,现为全球化开发与咨询公司Management研究集团研发副总裁。此前,Kabacoff博士是佛罗里达诺瓦东南大学的教授,讲授定量方法和统计编程的研究生课程。Kabacoff还是临床心理学博士、统计顾问,擅长数据分析,在健康、金融服务、制造业、行为科学、政府和学术界有20余年的研究和统计咨询经验。
王小宁
中国人民大学统计学院14级硕士,16级博士,统计之都副主编,中国人民大学数据挖掘中心分布式计算负责人,研究兴趣包括统计机器学习和缺失数据。
刘撷芯
中国人民大学统计学院13级硕士,爱荷华大学商学院16级博士,中国人民大学数据挖掘中心核心成员之一,研究兴趣包括统计机器学习和文本分析。
黄俊文
2014年毕业于中山大学数学系,2016年毕业于加州大学圣地亚哥分校统计学专业,统计之都成员,易易网创始人之一,目前关注计算机科学和统计学的结合与应用,包括机器学习方法等。他致力于成为一个有趣的人。
目录
目录
**部分 入门
**章 R语言介绍 3
1.1 为何要使用R 4
1.2 R的获取和安装 6
1.3 R的使用 6
1.3.1 新手上路 7
1.3.2 获取帮助 10
1.3.3 工作空间 10
1.3.4 输入和输出 12
1.4 包 13
1.4.1 什么是包 14
1.4.2 包的安装 14
1.4.3 包的载入 14
1.4.4 包的使用方法 14
1.5 批处理 15
1.6 将输出用为输入:结果的重用 16
1.7 处理大数据集 16
1.8 示例实践 16
1.9 小结 18
第2章 创建数据集 19
2.1 数据集的概念 19
2.2 数据结构 20
2.2.1 向量 21
2.2.2 矩阵 22
2.2.3 数组 23
2.2.4 数据框 24
2.2.5 因子 27
2.2.6 列表 28
2.3 数据的输入 30
2.3.1 使用键盘输入数据 31
2.3.2 从带分隔符的文本文件导入数据 32
2.3.3 导入Excel数据 35
2.3.4 导入XML数据 36
2.3.5 从网页抓取数据 36
2.3.6 导入SPSS数据 36
2.3.7 导入SAS数据 37
2.3.8 导入Stata数据 37
2.3.9 导入NetCDF数据 38
2.3.10 导入HDF5数据 38
2.3.11 访问数据库管理系统 38
2.3.12 通过Stat/Transfer导入数据 40
2.4 数据集的标注 40
2.4.1 变量标签 40
2.4.2 值标签 41
2.5 处理数据对象的实用函数 41
2.6 小结 42
第3章 图形初阶 43
3.1 使用图形 43
3.2 一个简单的例子 45
3.3 图形参数 46
3.3.1 符号和线条 47
3.3.2 颜色 49
3.3.3 文本属性 50
3.3.4 图形尺寸与边界尺寸 51
3.4 添加文本、自定义坐标轴和图例 53
3.4.1 标题 54
3.4.2 坐标轴 54
3.4.3 参考线 56
3.4.4 图例 57
3.4.5 文本标注 58
3.4.6 数学标注 60
3.5 图形的组合 61
3.6 小结 67
第4章 基本数据管理 68
4.1 一个示例 68
4.2 创建新变量 70
4.3 变量的重编码 71
4.4 变量的重命名 72
4.5 缺失值 74
4.5.1 重编码某些值为缺失值 74
4.5.2 在分析中排除缺失值 75
4.6 日期值 76
4.6.1 将日期转换为字符型变量 77
4.6.2 更进一步 78
4.7 类型转换 78
4.8 数据排序 79
4.9 数据集的合并 79
4.9.1 向数据框添加列 79
4.9.2 向数据框添加行 80
4.10 数据集取子集 80
4.10.1 SHOU*选入(保留)变量 80
4.10.2 剔除(丢弃)变量 81
4.10.3 SHOU*选入观测 82
4.10.4 subset()函数 82
4.10.5 随机抽样 83
4.11 使用SQL语句操作数据框 83
4.12 小结 84
第5章 高级数据管理 85
5.1 一个数据处理难题 85
5.2 数值和字符处理函数 86
5.2.1 数学函数 86
5.2.2 统计函数 87
5.2.3 概率函数 90
5.2.4 字符处理函数 92
5.2.5 其他实用函数 94
5.2.6 将函数应用于矩阵和数据框 95
5.3 数据处理难题的一套解决方案 96
5.4 控制流 100
5.4.1 重复和循环 100
5.4.2 条件执行 101
5.5 用户自编函数 102
5.6 整合与重构 104
5.6.1 转置 104
5.6.2 整合数据 105
5.6.3 reshape2包 106
5.7 小结 108
第二部分 基本方法
第6章 基本图形 110
6.1 条形图 110
6.1.1 简单的条形图 111
6.1.2 堆砌条形图和分组条形图 112
6.1.3 均值条形图 113
6.1.4 条形图的微调 114
6.1.5 棘状图 115
6.2 饼图 116
6.3 直方图 118
6.4 核密度图 120
6.5 箱线图 122
6.5.1 使用并列箱线图进行跨组比较 123
6.5.2 小提琴图 125
6.6 点图 127
6.7 小结 129
第7章 基本统计分析 130
7.1 描述性统计分析 131
7.1.1 方法云集 131
7.1.2 更多方法 132
7.1.3 分组计算描述性统计量 134
7.1.4 分组计算的扩展 135
7.1.5 结果的可视化 137
7.2 频数表和列联表 137
7.2.1 生成频数表 137
7.2.2 独立性检验 143
7.2.3 相关性的度量 144
7.2.4 结果的可视化 145
7.3 相关 145
7.3.1 相关的类型 145
7.3.2 相关性的显著性检验 147
7.3.3 相关关系的可视化 149
7.4 t检验 149
R语言实战第2版 [R in Action:Data Analysis and] 电子书 下载 mobi epub pdf txt