利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] pdf epub mobi txt 电子书 下载 2025

图书介绍


利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit]

简体网页||繁体网页
布里谷(Damiano Brigo),Fabio Mercurio 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510005602
版次:2
商品编码:10256966
包装:精装
外文名称:Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit
开本:24开
出版时间:2010-04-01
页数:981
正文语种

利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

相关图书



利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] pdf epub mobi txt 电子书 下载



具体描述

内容简介

   《利率模型理论和实践(第2版)》是一部详细讲述利率模型的书,旨在将该领域的理论和实践联系起来,在第一版的基础上增加了许多新特征。有关LIBOR市场模型中的“Smile”部分得到了极大的丰富,已有内容扩充为几个新的章节。书中增加了瞬时相关矩阵的历史估计,局部波动动力学和随机波动模型,全面讲述了新发展较快的不确定波动率方法。跟膨胀有关的衍生品定价讲述的较为详细。
读者对象:数学专业研究生、老师和经济、金融的相关人员。

内页插图

目录

Preface
Motivation
Aims, Readership and Book Structure
Final Word and Acknowledgments
Description of Contents by Chapter
Abbreviations and Notation

Part I. BASIC DEFINITIONS AND NO ARBITRAGE
1. Definitions and Notation
1.1 The Bank Account and the Short Rate
1.2 Zero-Coupon Bonds and Spot Interest Rates
1.3 Fundamental Interest-Rate Curves
1.4 Forward Rates
1.5 Interest-Rate Swaps and Forward Swap Rates
1.6 Interest-Rate Caps/Floors and Swaptions

2. No-Arbitrage Pricing and Numeraire Change
2.1 No-Arbitrage in Continuous Time
2.2 The Change-of-Numeraire Technique
2.3 A Change of Numeraire Toolkit(Brigo & Mercurio 2001c)
2.3.1 A helpful notation: "DC"
2.4 The Choice of a Convenient Numeraire
2.5 The Forward Measure
2.6 The Fundamental Pricing Formulas
2.6.1 The Pricing of Caps and Floors
2.7 Pricing Claims with Deferred Payoffs
2.8 Pricing Claims with Multiple Payoffs
2.9 Foreign Markets and Numeraire Change

Part II. FROM SHORT RATE MODELS TO HJM
3. One-factor short-rate models
3.1 Introduction and Guided Tour
3.2 Classical Time-Homogeneous Short-Rate Models
3.2.1 The Vasicek Model
3.2.2 The Dothan Model
3.2.3 The Cox, Ingersoll and Ross (CIR) Model
3.2.4 Affine Term-Structure Models
3.2.5 The Exponential-Vasicek (EV) Model
3.3 The Hull-White Extended Vasicek Model
3.3.1 The Short-Rate Dynamics
3.3.2 Bond and Option Pricing
3.3.3 The Construction of a Trinomial Tree
3.4 Possible Extensions of the CIR Model
3.5 The Black-Karasinski Model
3.5.1 The Short-Rate Dynamics
3.5.2 The Construction of a Trinomial Tree
3.6 Volatility Structures in One-Factor Short-Rate Models
3.7 Humped-Volatility Short-Rate Models
3.8 A General Deterministic-Shift Extension
3.8.1 The Basic Assumptions
3.8.2 Fitting the Initial Term Structure of Interest Rates
3.8.3 Explicit Formulas for European Options
3.8.4 The Vasicek Case
3.9 The CIR++ Model
3.9.1 The Construction of a Trinomial Tree
3.9.2 Early Exercise Pricing via Dynamic Programming
3.9.3 The Positivity of Rates and Fitting Quality
3.9.4 Monte Carlo Simulation
3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++)
3.10 Deterministic-Shift Extension of Lognormal Models
3.11 Some Further Remarks on Derivatives Pricing
3.11.1 Pricing European Options on a Coupon-Bearing Bond
3.11.2 The Monte Carlo Simulation
3.11.3 Pricing Early-Exercise Derivatives with a Tree
3.11.4 A Fundamental Case of Early Exercise: BermudanStyle Swaptions.
3.12 Implied Cap Volatility Curves
3.12.1 The Black and Karasinski Model
3.12.2 The CIR++ Model
3.12.3 The Extended Exponential-Vasicek Model
3.13 Implied Swaption Volatility Surfaces
3.13.1 The Black and Karasinski Model
3.13.2 The Extended Exponential-Vasicek Model
3.14 An Example of Calibration to Real-Market Data Two-Factor Short-Rate Models
4.1 Introduction and Motivation
4.2 The Two-Additive-Factor Gaussian Model G2++
4.2.1 The Short-Rate Dynamics
4.2.2 The Pricing of a Zero-Coupon Bond
4.2.3 Volatility and Correlation Structures in Two-Factor Models
4.2.4 The Pricing of a European Option on a Zero-Coupon Bond
4.2.5 The Analogy with the Hull-White Two-Factor Model
4.2.6 The Construction of an Approximating Binomial Tree
4.2.7 Examples of Calibration to Real-Market Data
4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++
4.3.1 The Basic Two-Factor CIR2 Model
4 3 2 Relationship with the Longstaff and Schwartz Model (LS)
4.3.3 Forward-Measure Dynamics and Option Pricing for CIR2
4.3.4 The CIR2++ Model and Option Pricing

5. The Heath-Jarrow-Morton (HJM) Framework
5.1 The HJM Forward-Rate Dynamics
5.2 Markovianity of the Short-Rate Process
5.3 The Ritchken and Sankarasubramanian Framework
5.4 The Mercurio and Moraleda Model

Part III. MARKET MODELS
6. The LIBOR and Swap Market Models (LFM and LSM)
6.1 Introduction
6.2 Market Models: a Guided Tour.
6.3 The Lognormal Forward-LIBOR Model (LFM)
6.3.1 Some Specifications of the Instantaneous Volatility of Forward Rates
6.3.2 Forward-Rate Dynamics under Different Numeraires
6.4 Calibration of the LFM to Caps and Floors Prices
6.4.1 Piecewise-Constant Instantaneous-Volatility Structures
6.4.2 Parametric Volatility Structures
6.4.3 Cap Quotes in the Market
6.5 The Term Structure of Volatility
6.5.1 Piecewise-Constant Instantaneous Volatility Structures
6.5.2 Parametric Volatility Structures
6.6 Instantaneous Correlation and Terminal Correlation
6.7 Swaptious and the Lognormal Forward-Swap Model (LSM)
6.7.1 Swaptions Hedging
6.7.2 Cash-Settled Swaptions
6.8 Incompatibility between the LFM and the LSM
6.9 The Structure of Instantaneous Correlations
6.9.1 Some convenient full rank parameterizations
6.9.2 Reduced-rank formulations: Rebonato's angles and eigen- values zeroing
6.9.3 Reducing the angles
6.10 Monte Carlo Pricing of Swaptions with the LFM
6.11 Monte Carlo Standard Error
6.12 Monte Carlo Variance Reduction: Control Variate Estimator
6.13 Rank-One Analytical Swaption Prices
6.14 Rank-r Analytical Swaption Prices
6.15 A Simpler LFM Formula for Swaptions Volatilities
6.16 A Formula for Terminal Correlations of Forward Rates
6.17 Calibration to Swaptions Prices
6.18 Instantaneous Correlations: Inputs (Historical Estimation) or Outputs (Fitting Parameters)?
6.19 The exogenous correlation matrix
6.19.1 Historical Estimation
6.19.2 Pivot matrices
6.20 Connecting Caplet and S x 1-Swaption Volatilities
6.21 Forward and Spot Rates over Non-Standard Periods
6.21.1 Drift Interpolation
6.21.2 The Bridging Technique

7. Cases of Calibration of the LIBOR Market Model
7.1 Inputs for the First Cases
7.2 Joint Calibration with Piecewise-Constant Volatilities as in TABLE 5
7.3 Joint Calibration with Parameterized Volatilities as in Formulation 7
7.4 Exact Swaptions "Cascade" Calibration with Volatilities as in TABLE 1
7.4.1 Some Numerical Results
7.5 A Pause for Thought
7.5.1 First summary
7.5.2 An automatic fast analytical calibration of LFM to swaptions. Motivations and plan
7.6 Further Numerical Studies on the Cascade Calibration Algorithm
……
8.Monte Carlo Tests for LFM Analytical Approximations
Part Ⅳ.THE VOLATILITY SMILF
9.Including the Smile in the LFM
10.Local-Volatility Models
11.Stochasti-Volatility Models
12.Uncertain-Parameter Models
Part Ⅴ.EXAMPLES OF MARKET PAYOFFS
13.Pricing Derivatives on a Single Interest-Rate Curve
14.Pricing Derivatives on Two Interest-Rate Curves
Part Ⅵ.INFLATION
15.Pricing of Inflation-Indexed Derivatives
16.Inflation Indexed Swaps
17.Inflation-Indexed Caplets/Floorlets
18.Calibration to market data
19.Introducing Stochastic Volatility
20.Pricing Hybrids with an Inflation Component
Part Ⅶ.CREDIT
21.Introduction and Pricing under Counterparty Risk
22.Intensity Models
23.CDS Options Market Models
Part Ⅷ.APPENDICES
A.Other Interest-Rate Models
B.Pricing Equity Derivatives under Stochastic Rates
C.A Crash Intro to Stochastic Differential Equations and Poisson Processes
D.A Useful Calculation
E.A Second Useful Calculation
F.Approximating Diffusions with Trees
G.Trivia and Frequently Asked Questions
H.Talking to the Traders
References
Index

精彩书摘

In the recent years, there has been an increasing interest for hybrid structures whose payoff is based on assets belonging to different markets. Among them, derivatives with an inflation component are getting more and more popular. In 利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] 电子书 下载 mobi epub pdf txt

利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

需要有一定数学基础,跟实践很接近

评分

根据此模型,利率的决定取决于储蓄供给、投资需要、货币供给、货币需求四个因素,导致储蓄投资、货币供求变动的因素都将影响到利率水平。这种理论的特点是一般均衡分析。该理论在比较严密的理论框架下,把古典理论的商品市场均衡和凯恩斯理论的货币市场均衡有机的统一在一起。

评分

利率作为金融市场最重要的价格变量之一,理论和实务界对其作了广泛的研究。从微观金融市场上的各种金融机构来说,由于短期基准利率是各种固定收益证券及其衍生产品定价的基础,因此,短期基准利率曲线的构造对于风险管理就显得尤为重要。从宏观金融市场来说,在利率市场化的情况下,利率将是货币政策的主要传导媒介,中央银行正是利用其来影响微观经济主体的经济行为,从而达到货币政策调控的目标。由于市场基准利率在微观和宏观金融市场上的重要作用,所以理论界提出了很多利率期限结构理论来解释利率的随机行为特征。传统的理论主要从定性的角度出发,将研究重点放在解释收益率曲线的形状以及原因上面。现代的利率期限结构理论则将研究重点转到定量方向上来。研究者建立了很多数量模型来刻画利率的随机特征,同时,还有很多学者运用各国金融市场的数据,对这些模型作了实证检验。

评分

挺好的,以前重来不去评价的,不知道浪费了多少积分,自从知道评论之后京豆可以抵现金了,才知道评论的重要性,京豆的价值,后来我就把这段话复制了,走到哪里,复制到哪里,既能赚京东,还非常省事,特别是不用认真的评论了,又健康快乐又能么么哒,哈哈哈!

评分

评分

在京东有史以来最糟糕的一次购物体验,拿到的书比较破。强烈建议京东对书本包装按照易损件标准进行装箱!

评分

评分

凯恩斯认为储蓄和投资是两个相互依赖的变量,而不是两个独立的变量。在他的理论中,货币供应由中央银行控制,是没有利率弹性的外生变量。此时货币需求就取决于人们心理上的“流动性偏好”。而后产生的可贷资金利率理论是新古典学派的利率理论,是为修正凯恩斯的“流动性偏好”利率理论而提出的。在某种程度上,可贷资金利率理论实际上可看成古典利率理论和凯恩斯理论的一种综合。

类似图书 点击查看全场最低价

利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


利率模型理论和实践(第2版) [Interest Rate Models - Theory and Practice:With Smile, Inflation and Credit] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有